1 code implementation • 19 Mar 2025 • Shuo Li, Jiajun Sun, Guodong Zheng, Xiaoran Fan, Yujiong Shen, Yi Lu, Zhiheng Xi, Yuming Yang, Wenming Tan, Tao Ji, Tao Gui, Qi Zhang, Xuanjing Huang
Recently, multimodal large language models (MLLMs) have demonstrated remarkable performance in visual-language tasks.
2 code implementations • 24 Oct 2024 • wei he, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen Ding, Zifei Shan, Tao Gui, Qi Zhang, Xuanjing Huang
Specifically, we employ text-based synthesizing techniques to construct chart-plotting code and produce ReachQA, a dataset containing 3k reasoning-intensive charts and 20k Q&A pairs to enhance both recognition and reasoning abilities.
no code implementations • 15 Oct 2024 • Shuo Li, Tao Ji, Xiaoran Fan, Linsheng Lu, Leyi Yang, Yuming Yang, Zhiheng Xi, Rui Zheng, Yuran Wang, Xiaohui Zhao, Tao Gui, Qi Zhang, Xuanjing Huang
Our findings indicate that the ability to prevent sycophancy is predominantly observed in higher layers of the model.
1 code implementation • 29 Jul 2024 • Dinghao Xue, Xiaoran Fan, Tao Chen, Guohao Lan, Qun Song
To address this, zero-shot learning (ZSL) aims to classify data of unseen classes with the help of semantic information.
1 code implementation • 8 Feb 2024 • Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, wei he, Yiwen Ding, Shichun Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou, Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, Xuanjing Huang
In this paper, we propose R$^3$: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL), a novel method that employs only outcome supervision to achieve the benefits of process supervision for large language models.
1 code implementation • 2 Feb 2024 • Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang Huang, Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Xuanjing Huang, Tao Gui
The advancement of large language models (LLMs) has significantly propelled the field of code generation.
1 code implementation • 30 Jan 2024 • Xiaoran Fan, Tao Ji, Changhao Jiang, Shuo Li, Senjie Jin, Sirui Song, Junke Wang, Boyang Hong, Lu Chen, Guodong Zheng, Ming Zhang, Caishuang Huang, Rui Zheng, Zhiheng Xi, Yuhao Zhou, Shihan Dou, Junjie Ye, Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, Yu-Gang Jiang
This technique introduces a fusion network to unify the processing of outputs from different visual experts, while bridging the gap between image encoders and pre-trained LLMs.
Ranked #124 on
Visual Question Answering
on MM-Vet
1 code implementation • 16 Jan 2024 • Junjie Ye, Yilong Wu, Songyang Gao, Caishuang Huang, Sixian Li, Guanyu Li, Xiaoran Fan, Qi Zhang, Tao Gui, Xuanjing Huang
To bridge this gap, we introduce RoTBench, a multi-level benchmark for evaluating the robustness of LLMs in tool learning.
1 code implementation • 11 Jan 2024 • Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao Zhou, Xiaoran Fan, Zhiheng Xi, Jun Zhao, Xiao Wang, Tao Ji, Hang Yan, Lixing Shen, Zhan Chen, Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, Yu-Gang Jiang
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset and fully leverage high-quality preference data.
1 code implementation • 1 Jan 2024 • Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang, Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou, Tao Ji, Qi Zhang, Tao Gui, Xuanjing Huang
Existing evaluations of tool learning primarily focus on validating the alignment of selected tools for large language models (LLMs) with expected outcomes.
1 code implementation • 15 Dec 2023 • Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao Wang, Xiaoran Fan, ShiLiang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang, Xuanjing Huang
Supervised fine-tuning (SFT) is a crucial step for large language models (LLMs), enabling them to align with human instructions and enhance their capabilities in downstream tasks.
no code implementations • 17 Oct 2023 • Enyu Zhou, Rui Zheng, Zhiheng Xi, Songyang Gao, Xiaoran Fan, Zichu Fei, Jingting Ye, Tao Gui, Qi Zhang, Xuanjing Huang
Reports of human-like behaviors in foundation models are growing, with psychological theories providing enduring tools to investigate these behaviors.
1 code implementation • 14 Sep 2023 • Zhiheng Xi, Wenxiang Chen, Xin Guo, wei he, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, Tao Gui
Many efforts have been made to develop intelligent agents, but they mainly focus on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks.
2 code implementations • 7 Nov 2022 • Xiaoran Fan, Chao Pang, Tian Yuan, He Bai, Renjie Zheng, Pengfei Zhu, Shuohuan Wang, Junkun Chen, Zeyu Chen, Liang Huang, Yu Sun, Hua Wu
In this paper, we extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks, including cross-lingual multi-speaker voice cloning and cross-lingual multi-speaker speech editing.
no code implementations • 21 Jul 2022 • Boyang xia, Wenhao Wu, Haoran Wang, Rui Su, Dongliang He, Haosen Yang, Xiaoran Fan, Wanli Ouyang
On the video level, a temporal attention module is learned under dual video-level supervisions on both the salient and the non-salient representations.
Ranked #4 on
Action Recognition
on ActivityNet
no code implementations • CVPR 2022 • Zhijian Yang, Xiaoran Fan, Volkan Isler, Hyun Soo Park
Based on this insight, we introduce a time-invariant transfer function called pose kernel -- the impulse response of audio signals induced by the body pose.
no code implementations • 10 Aug 2021 • Xiaoran Fan, Riley Simmons-Edler, Daewon Lee, Larry Jackel, Richard Howard, Daniel Lee
In this paper, we introduce the phenomenon of the Leaky Surface Wave (LSW), a novel sensing modality, and present AuraSense, a proximity detection system using the LSW.
no code implementations • SEMEVAL 2021 • Chao Pang, Xiaoran Fan, Weiyue Su, Xuyi Chen, Shuohuan Wang, Jiaxiang Liu, Xuan Ouyang, Shikun Feng, Yu Sun
This paper describes our system participated in Task 7 of SemEval-2021: Detecting and Rating Humor and Offense.