1 code implementation • 26 Jan 2025 • Yadong Li, Jun Liu, Tao Zhang, Song Chen, Tianpeng Li, zehuan li, Lijun Liu, Lingfeng Ming, Guosheng Dong, Da Pan, Chong Li, Yuanbo Fang, Dongdong Kuang, Mingrui Wang, Chenglin Zhu, Youwei Zhang, Hongyu Guo, Fengyu Zhang, Yuran Wang, Bowen Ding, Wei Song, Xu Li, Yuqi Huo, Zheng Liang, Shusen Zhang, Xin Wu, Shuai Zhao, Linchu Xiong, Yozhen Wu, Jiahui Ye, Wenhao Lu, Bowen Li, Yan Zhang, Yaqi Zhou, Xin Chen, Lei Su, Hongda Zhang, Fuzhong Chen, Xuezhen Dong, Na Nie, Zhiying Wu, Bin Xiao, Ting Li, Shunya Dang, Ping Zhang, Yijia Sun, Jincheng Wu, Jinjie Yang, Xionghai Lin, Zhi Ma, Kegeng Wu, Jia Li, Aiyuan Yang, Hui Liu, Jianqiang Zhang, Xiaoxi Chen, Guangwei Ai, Wentao Zhang, Yicong Chen, Xiaoqin Huang, Kun Li, Wenjing Luo, Yifei Duan, Lingling Zhu, Ran Xiao, Zhe Su, Jiani Pu, Dian Wang, Xu Jia, Tianyu Zhang, Mengyu Ai, Mang Wang, Yujing Qiao, Lei Zhang, Yanjun Shen, Fan Yang, Miao Zhen, Yijie Zhou, Mingyang Chen, Fei Li, Chenzheng Zhu, Keer Lu, Yaqi Zhao, Hao Liang, Youquan Li, Yanzhao Qin, Linzhuang Sun, Jianhua Xu, Haoze Sun, MingAn Lin, Zenan Zhou, WeiPeng Chen
We introduce Baichuan-Omni-1. 5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities.
1 code implementation • 8 Jan 2025 • Pedro R. A. S. Bassi, Mehmet Can Yavuz, Kang Wang, Xiaoxi Chen, Wenxuan Li, Sergio Decherchi, Andrea Cavalli, Yang Yang, Alan Yuille, Zongwei Zhou
With over 85 million CT scans performed annually in the United States, creating tumor-related reports is a challenging and time-consuming task for radiologists.
1 code implementation • 6 Jan 2025 • Wenxuan Li, Pedro R. A. S. Bassi, Tianyu Lin, Yu-Cheng Chou, Xinze Zhou, Yucheng Tang, Fabian Isensee, Kang Wang, Qi Chen, Xiaowei Xu, Xiaoxi Chen, Lizhou Wu, Qilong Wu, Yannick Kirchhoff, Maximilian Rokuss, Saikat Roy, Yuxuan Zhao, Dexin Yu, Kai Ding, Constantin Ulrich, Klaus Maier-Hein, Yang Yang, Alan L. Yuille, Zongwei Zhou
This process often delays AI benefits, as human-centric data creation and AI-centric model development are treated as separate, sequential steps.
no code implementations • 9 Sep 2024 • Qi Chen, Yuxiang Lai, Xiaoxi Chen, Qixin Hu, Alan Yuille, Zongwei Zhou
We also present case studies in the liver, pancreas, and kidneys reveal that AI trained on synthetic tumors can achieve performance comparable to, or better than, AI only trained on real data.
2 code implementations • 23 Jul 2024 • Wenxuan Li, Chongyu Qu, Xiaoxi Chen, Pedro R. A. S. Bassi, Yijia Shi, Yuxiang Lai, Qian Yu, Huimin Xue, Yixiong Chen, Xiaorui Lin, Yutong Tang, Yining Cao, Haoqi Han, Zheyuan Zhang, Jiawei Liu, Tiezheng Zhang, Yujiu Ma, Jincheng Wang, Guang Zhang, Alan Yuille, Zongwei Zhou
AbdomenAtlas provides 673K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms.
1 code implementation • 28 May 2024 • Jie Liu, Yixiao Zhang, Kang Wang, Mehmet Can Yavuz, Xiaoxi Chen, Yixuan Yuan, Haoliang Li, Yang Yang, Alan Yuille, Yucheng Tang, Zongwei Zhou
However, these AI models often struggle with flexibility for partially annotated datasets and extensibility for new classes due to limitations in the one-hot encoding, architectural design, and learning scheme.
1 code implementation • 11 Mar 2024 • Yuxiang Lai, Xiaoxi Chen, Angtian Wang, Alan Yuille, Zongwei Zhou
We apply these three generic rules to simulate tumor development--from pixel to cancer--using cellular automata.
1 code implementation • 29 Feb 2024 • Tiezheng Zhang, Xiaoxi Chen, Chongyu Qu, Alan Yuille, Zongwei Zhou
Human experts revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from these revised annotations.
1 code implementation • CVPR 2024 • Qi Chen, Xiaoxi Chen, Haorui Song, Zhiwei Xiong, Alan Yuille, Chen Wei, Zongwei Zhou
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
2 code implementations • 19 Sep 2023 • Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei Cheng, WeiPeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang, Zenan Zhou, Zhiying Wu
Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering.
1 code implementation • 30 Aug 2023 • Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger
For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.