no code implementations • 11 Feb 2025 • Yanxiao Hu, Ye Sheng, Jing Huang, Xiaoxin Xu, Yuyan Yang, Mingqiang Zhang, Yabei Wu, Caichao Ye, Jiong Yang, Wenqing Zhang
Using machine learning (ML) to construct interatomic interactions and thus potential energy surface (PES) has become a common strategy for materials design and simulations.
no code implementations • 12 Jul 2024 • Yue Zhang, Woyu Zhang, Shaocong Wang, Ning Lin, Yifei Yu, Yangu He, Bo wang, Hao Jiang, Peng Lin, Xiaoxin Xu, Xiaojuan Qi, Zhongrui Wang, Xumeng Zhang, Dashan Shang, Qi Liu, Kwang-Ting Cheng, Ming Liu
In contrast, AI models are static, unable to associate inputs with past experiences, and run on digital computers with physically separated memory and processing.
1 code implementation • 8 Apr 2024 • Jichang Yang, Hegan Chen, Jia Chen, Songqi Wang, Shaocong Wang, Yifei Yu, Xi Chen, Bo wang, Xinyuan Zhang, Binbin Cui, Ning Lin, Meng Xu, Yi Li, Xiaoxin Xu, Xiaojuan Qi, Zhongrui Wang, Xumeng Zhang, Dashan Shang, Han Wang, Qi Liu, Kwang-Ting Cheng, Ming Liu
Demonstrating equivalent generative quality to the software baseline, our system achieved remarkable enhancements in generative speed for both unconditional and conditional generation tasks, by factors of 64. 8 and 156. 5, respectively.
no code implementations • 14 Dec 2023 • Shaocong Wang, Yizhao Gao, Yi Li, Woyu Zhang, Yifei Yu, Bo wang, Ning Lin, Hegan Chen, Yue Zhang, Yang Jiang, Dingchen Wang, Jia Chen, Peng Dai, Hao Jiang, Peng Lin, Xumeng Zhang, Xiaojuan Qi, Xiaoxin Xu, Hayden So, Zhongrui Wang, Dashan Shang, Qi Liu, Kwang-Ting Cheng, Ming Liu
Our random resistive memory-based deep extreme point learning machine may pave the way for energy-efficient and training-friendly edge AI across various data modalities and tasks.
no code implementations • 13 Nov 2023 • Yi Li, Songqi Wang, Yaping Zhao, Shaocong Wang, Woyu Zhang, Yangu He, Ning Lin, Binbin Cui, Xi Chen, Shiming Zhang, Hao Jiang, Peng Lin, Xumeng Zhang, Xiaojuan Qi, Zhongrui Wang, Xiaoxin Xu, Dashan Shang, Qi Liu, Kwang-Ting Cheng, Ming Liu
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning to optimize the topology of a randomly weighted analogue resistive memory neural network.
no code implementations • 25 Apr 2023 • Yang Li, Wei Wang, Ming Wang, Chunmeng Dou, Zhengyu Ma, Huihui Zhou, Peng Zhang, Nicola Lepri, Xumeng Zhang, Qing Luo, Xiaoxin Xu, Guanhua Yang, Feng Zhang, Ling Li, Daniele Ielmini, Ming Liu
We propose a binary stochastic learning algorithm that modifies all elementary neural network operations, by introducing (i) stochastic binarization of both the forwarding signals and the activation function derivatives, (ii) signed binarization of the backpropagating errors, and (iii) step-wised weight updates.
no code implementations • 15 Mar 2022 • Wei Wang, Barak Hoffer, Tzofnat Greenberg-Toledo, Yang Li, Minhui Zou, Eric Herbelin, Ronny Ronen, Xiaoxin Xu, Yulin Zhao, Jianguo Yang, Shahar Kvatinsky
Nevertheless, the implementation of the VMM needs complex peripheral circuits and the complexity further increases since non-idealities of memristive devices prevent precise conductance tuning (especially for the online training) and largely degrade the performance of the deep neural networks (DNNs).