1 code implementation • 27 Feb 2025 • Maximilian Böther, Xiaozhe Yao, Tolga Kerimoglu, Dan Graur, Viktor Gsteiger, Ana Klimovic
We build and present Mixtera, a data plane for foundation model training that enables users to declaratively express which data samples should be used in which proportion and in which order during training.
1 code implementation • 19 Nov 2024 • Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, Ce Zhang
In addition, we release RedPajama-V2, a massive web-only dataset consisting of raw, unfiltered text data together with quality signals and metadata.
no code implementations • 30 Mar 2024 • Taishi Nakamura, Mayank Mishra, Simone Tedeschi, Yekun Chai, Jason T Stillerman, Felix Friedrich, Prateek Yadav, Tanmay Laud, Vu Minh Chien, Terry Yue Zhuo, Diganta Misra, Ben Bogin, Xuan-Son Vu, Marzena Karpinska, Arnav Varma Dantuluri, Wojciech Kusa, Tommaso Furlanello, Rio Yokota, Niklas Muennighoff, Suhas Pai, Tosin Adewumi, Veronika Laippala, Xiaozhe Yao, Adalberto Junior, Alpay Ariyak, Aleksandr Drozd, Jordan Clive, Kshitij Gupta, Liangyu Chen, Qi Sun, Ken Tsui, Noah Persaud, Nour Fahmy, Tianlong Chen, Mohit Bansal, Nicolo Monti, Tai Dang, Ziyang Luo, Tien-Tung Bui, Roberto Navigli, Virendra Mehta, Matthew Blumberg, Victor May, Huu Nguyen, Sampo Pyysalo
Despite these efforts, such models encounter challenges such as limited multilingual capabilities, risks of catastrophic forgetting during continual pretraining, and the high costs of training models from scratch, alongside the need to align with AI safety standards and regulatory frameworks.
1 code implementation • 8 Dec 2023 • Xiaozhe Yao, Qinghao Hu, Ana Klimovic
Fine-tuning large language models (LLMs) greatly improves model quality for downstream tasks.
no code implementations • 21 Nov 2023 • Luis Oala, Manil Maskey, Lilith Bat-Leah, Alicia Parrish, Nezihe Merve Gürel, Tzu-Sheng Kuo, Yang Liu, Rotem Dror, Danilo Brajovic, Xiaozhe Yao, Max Bartolo, William A Gaviria Rojas, Ryan Hileman, Rainier Aliment, Michael W. Mahoney, Meg Risdal, Matthew Lease, Wojciech Samek, Debojyoti Dutta, Curtis G Northcutt, Cody Coleman, Braden Hancock, Bernard Koch, Girmaw Abebe Tadesse, Bojan Karlaš, Ahmed Alaa, Adji Bousso Dieng, Natasha Noy, Vijay Janapa Reddi, James Zou, Praveen Paritosh, Mihaela van der Schaar, Kurt Bollacker, Lora Aroyo, Ce Zhang, Joaquin Vanschoren, Isabelle Guyon, Peter Mattson
Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science.
1 code implementation • NeurIPS 2023 • Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan Karlaš, William Gaviria Rojas, Sudnya Diamos, Greg Diamos, Lynn He, Alicia Parrish, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Douwe Kiela, David Jurado, David Kanter, Rafael Mosquera, Juan Ciro, Lora Aroyo, Bilge Acun, Lingjiao Chen, Mehul Smriti Raje, Max Bartolo, Sabri Eyuboglu, Amirata Ghorbani, Emmett Goodman, Oana Inel, Tariq Kane, Christine R. Kirkpatrick, Tzu-Sheng Kuo, Jonas Mueller, Tristan Thrush, Joaquin Vanschoren, Margaret Warren, Adina Williams, Serena Yeung, Newsha Ardalani, Praveen Paritosh, Lilith Bat-Leah, Ce Zhang, James Zou, Carole-Jean Wu, Cody Coleman, Andrew Ng, Peter Mattson, Vijay Janapa Reddi
Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems.
1 code implementation • 4 Apr 2022 • Cedric Renggli, Xiaozhe Yao, Luka Kolar, Luka Rimanic, Ana Klimovic, Ce Zhang
Transfer learning can be seen as a data- and compute-efficient alternative to training models from scratch.