Search Results for author: Xihong Yang

Found 22 papers, 11 papers with code

DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System

no code implementations15 Aug 2024 Xihong Yang, Heming Jing, Zixing Zhang, Jindong Wang, Huakang Niu, Shuaiqiang Wang, Yu Lu, Junfeng Wang, Dawei Yin, Xinwang Liu, En Zhu, Defu Lian, Erxue Min

In this work, we prove that directly aligning the representations of LLMs and collaborative models is sub-optimal for enhancing downstream recommendation tasks performance, based on the information theorem.

Contrastive Learning Language Modeling +4

Dual Test-time Training for Out-of-distribution Recommender System

no code implementations22 Jul 2024 Xihong Yang, Yiqi Wang, Jin Chen, Wenqi Fan, Xiangyu Zhao, En Zhu, Xinwang Liu, Defu Lian

To address this challenge, we propose a novel Dual Test-Time-Training framework for OOD Recommendation, termed DT3OR.

Recommendation Systems

Learn from View Correlation: An Anchor Enhancement Strategy for Multi-view Clustering

no code implementations CVPR 2024 Suyuan Liu, Ke Liang, Zhibin Dong, Siwei Wang, Xihong Yang, Sihang Zhou, En Zhu, Xinwang Liu

By learning from view correlation we enhance the anchors of the current view using the relationships between anchors and samples on neighboring views thereby narrowing the spatial distribution of anchors on similar views.

Clustering

Asymmetric double-winged multi-view clustering network for exploring Diverse and Consistent Information

no code implementations1 Sep 2023 Qun Zheng, Xihong Yang, Siwei Wang, Xinru An, Qi Liu

In unsupervised scenarios, deep contrastive multi-view clustering (DCMVC) is becoming a hot research spot, which aims to mine the potential relationships between different views.

Clustering Diversity +1

Efficient Multi-View Graph Clustering with Local and Global Structure Preservation

1 code implementation31 Aug 2023 Yi Wen, Suyuan Liu, Xinhang Wan, Siwei Wang, Ke Liang, Xinwang Liu, Xihong Yang, Pei Zhang

Anchor-based multi-view graph clustering (AMVGC) has received abundant attention owing to its high efficiency and the capability to capture complementary structural information across multiple views.

Clustering Graph Clustering +1

CONVERT:Contrastive Graph Clustering with Reliable Augmentation

2 code implementations17 Aug 2023 Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, En Zhu

To address these problems, we propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT).

Clustering Contrastive Learning +4

DealMVC: Dual Contrastive Calibration for Multi-view Clustering

1 code implementation17 Aug 2023 Xihong Yang, Jiaqi Jin, Siwei Wang, Ke Liang, Yue Liu, Yi Wen, Suyuan Liu, Sihang Zhou, Xinwang Liu, En Zhu

Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph.

Clustering Pseudo Label

Reinforcement Graph Clustering with Unknown Cluster Number

2 code implementations13 Aug 2023 Yue Liu, Ke Liang, Jun Xia, Xihong Yang, Sihang Zhou, Meng Liu, Xinwang Liu, Stan Z. Li

To enable the deep graph clustering algorithms to work without the guidance of the predefined cluster number, we propose a new deep graph clustering method termed Reinforcement Graph Clustering (RGC).

Clustering Graph Clustering +1

Dink-Net: Neural Clustering on Large Graphs

3 code implementations28 May 2023 Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu, Stan Z. Li

Subsequently, the clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss in an adversarial manner.

Clustering Graph Clustering +1

Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot Antibody Designer

1 code implementation21 Apr 2023 Cheng Tan, Zhangyang Gao, Lirong Wu, Jun Xia, Jiangbin Zheng, Xihong Yang, Yue Liu, Bozhen Hu, Stan Z. Li

In this paper, we propose a \textit{simple yet effective} model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.

Specificity

SARF: Aliasing Relation Assisted Self-Supervised Learning for Few-shot Relation Reasoning

no code implementations20 Apr 2023 Lingyuan Meng, Ke Liang, Bin Xiao, Sihang Zhou, Yue Liu, Meng Liu, Xihong Yang, Xinwang Liu

Moreover, most of the existing methods ignore leveraging the beneficial information from aliasing relations (AR), i. e., data-rich relations with similar contextual semantics to the target data-poor relation.

Knowledge Graphs Relation +1

Cluster-guided Contrastive Graph Clustering Network

1 code implementation3 Jan 2023 Xihong Yang, Yue Liu, Sihang Zhou, Siwei Wang, Wenxuan Tu, Qun Zheng, Xinwang Liu, Liming Fang, En Zhu

Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views.

Clustering Contrastive Learning +1

Hard Sample Aware Network for Contrastive Deep Graph Clustering

2 code implementations16 Dec 2022 Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Zhen Wang, Ke Liang, Wenxuan Tu, Liang Li, Jingcan Duan, Cancan Chen

Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones.

Attribute Clustering +1

GraphLearner: Graph Node Clustering with Fully Learnable Augmentation

2 code implementations7 Dec 2022 Xihong Yang, Erxue Min, Ke Liang, Yue Liu, Siwei Wang, Sihang Zhou, Huijun Wu, Xinwang Liu, En Zhu

During the training procedure, we notice the distinct optimization goals for training learnable augmentors and contrastive learning networks.

Attribute Clustering +5

Knowledge Graph Contrastive Learning Based on Relation-Symmetrical Structure

no code implementations19 Nov 2022 Ke Liang, Yue Liu, Sihang Zhou, Wenxuan Tu, Yi Wen, Xihong Yang, Xiangjun Dong, Xinwang Liu

To this end, we propose a knowledge graph contrastive learning framework based on relation-symmetrical structure, KGE-SymCL, which mines symmetrical structure information in KGs to enhance the discriminative ability of KGE models.

Contrastive Learning Graph Learning +5

Mixed Graph Contrastive Network for Semi-Supervised Node Classification

no code implementations6 Jun 2022 Xihong Yang, Yue Liu, Sihang Zhou, Xinwang Liu, En Zhu

Graph Neural Networks (GNNs) have achieved promising performance in semi-supervised node classification in recent years.

Classification Contrastive Learning +4

Simple Contrastive Graph Clustering

no code implementations11 May 2022 Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu

To solve this problem, we propose a Simple Contrastive Graph Clustering (SCGC) algorithm to improve the existing methods from the perspectives of network architecture, data augmentation, and objective function.

Clustering Contrastive Learning +4

Improved Dual Correlation Reduction Network

no code implementations25 Feb 2022 Yue Liu, Sihang Zhou, Xinwang Liu, Wenxuan Tu, Xihong Yang

Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different clusters without human annotations, is a fundamental yet challenging task.

Clustering Feature Correlation +1

Interpolation-based Contrastive Learning for Few-Label Semi-Supervised Learning

no code implementations24 Feb 2022 Xihong Yang, Xiaochang Hu, Sihang Zhou, Xinwang Liu, En Zhu

Specifically, the proposed algorithm outperforms the second best algorithm (Comatch) with 5. 3% by achieving 88. 73% classification accuracy when only two labels are available for each class on the CIFAR-10 dataset.

Contrastive Learning Data Augmentation

Deep Graph Clustering via Dual Correlation Reduction

2 code implementations29 Dec 2021 Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, En Zhu

To address this issue, we propose a novel self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN) by reducing information correlation in a dual manner.

Clustering Feature Correlation +1

Cannot find the paper you are looking for? You can Submit a new open access paper.