no code implementations • 15 Aug 2024 • Xihong Yang, Heming Jing, Zixing Zhang, Jindong Wang, Huakang Niu, Shuaiqiang Wang, Yu Lu, Junfeng Wang, Dawei Yin, Xinwang Liu, En Zhu, Defu Lian, Erxue Min
In this work, we prove that directly aligning the representations of LLMs and collaborative models is sub-optimal for enhancing downstream recommendation tasks performance, based on the information theorem.
no code implementations • 22 Jul 2024 • Xihong Yang, Yiqi Wang, Jin Chen, Wenqi Fan, Xiangyu Zhao, En Zhu, Xinwang Liu, Defu Lian
To address this challenge, we propose a novel Dual Test-Time-Training framework for OOD Recommendation, termed DT3OR.
no code implementations • 21 Apr 2024 • Jiaxin Zhang, Yiqi Wang, Xihong Yang, Siwei Wang, Yu Feng, Yu Shi, Ruicaho Ren, En Zhu, Xinwang Liu
Graph Neural Networks have demonstrated great success in various fields of multimedia.
no code implementations • CVPR 2024 • Suyuan Liu, Ke Liang, Zhibin Dong, Siwei Wang, Xihong Yang, Sihang Zhou, En Zhu, Xinwang Liu
By learning from view correlation we enhance the anchors of the current view using the relationships between anchors and samples on neighboring views thereby narrowing the spatial distribution of anchors on similar views.
no code implementations • 1 Sep 2023 • Qun Zheng, Xihong Yang, Siwei Wang, Xinru An, Qi Liu
In unsupervised scenarios, deep contrastive multi-view clustering (DCMVC) is becoming a hot research spot, which aims to mine the potential relationships between different views.
1 code implementation • 31 Aug 2023 • Yi Wen, Suyuan Liu, Xinhang Wan, Siwei Wang, Ke Liang, Xinwang Liu, Xihong Yang, Pei Zhang
Anchor-based multi-view graph clustering (AMVGC) has received abundant attention owing to its high efficiency and the capability to capture complementary structural information across multiple views.
2 code implementations • 17 Aug 2023 • Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, En Zhu
To address these problems, we propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT).
1 code implementation • 17 Aug 2023 • Xihong Yang, Jiaqi Jin, Siwei Wang, Ke Liang, Yue Liu, Yi Wen, Suyuan Liu, Sihang Zhou, Xinwang Liu, En Zhu
Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph.
2 code implementations • 13 Aug 2023 • Yue Liu, Ke Liang, Jun Xia, Xihong Yang, Sihang Zhou, Meng Liu, Xinwang Liu, Stan Z. Li
To enable the deep graph clustering algorithms to work without the guidance of the predefined cluster number, we propose a new deep graph clustering method termed Reinforcement Graph Clustering (RGC).
3 code implementations • 28 May 2023 • Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu, Stan Z. Li
Subsequently, the clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss in an adversarial manner.
1 code implementation • 21 Apr 2023 • Cheng Tan, Zhangyang Gao, Lirong Wu, Jun Xia, Jiangbin Zheng, Xihong Yang, Yue Liu, Bozhen Hu, Stan Z. Li
In this paper, we propose a \textit{simple yet effective} model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
no code implementations • 20 Apr 2023 • Lingyuan Meng, Ke Liang, Bin Xiao, Sihang Zhou, Yue Liu, Meng Liu, Xihong Yang, Xinwang Liu
Moreover, most of the existing methods ignore leveraging the beneficial information from aliasing relations (AR), i. e., data-rich relations with similar contextual semantics to the target data-poor relation.
1 code implementation • 3 Jan 2023 • Xihong Yang, Yue Liu, Sihang Zhou, Siwei Wang, Wenxuan Tu, Qun Zheng, Xinwang Liu, Liming Fang, En Zhu
Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views.
2 code implementations • 16 Dec 2022 • Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Zhen Wang, Ke Liang, Wenxuan Tu, Liang Li, Jingcan Duan, Cancan Chen
Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones.
2 code implementations • 7 Dec 2022 • Xihong Yang, Erxue Min, Ke Liang, Yue Liu, Siwei Wang, Sihang Zhou, Huijun Wu, Xinwang Liu, En Zhu
During the training procedure, we notice the distinct optimization goals for training learnable augmentors and contrastive learning networks.
2 code implementations • 23 Nov 2022 • Yue Liu, Jun Xia, Sihang Zhou, Xihong Yang, Ke Liang, Chenchen Fan, Yan Zhuang, Stan Z. Li, Xinwang Liu, Kunlun He
However, the corresponding survey paper is relatively scarce, and it is imminent to make a summary of this field.
no code implementations • 19 Nov 2022 • Ke Liang, Yue Liu, Sihang Zhou, Wenxuan Tu, Yi Wen, Xihong Yang, Xiangjun Dong, Xinwang Liu
To this end, we propose a knowledge graph contrastive learning framework based on relation-symmetrical structure, KGE-SymCL, which mines symmetrical structure information in KGs to enhance the discriminative ability of KGE models.
no code implementations • 6 Jun 2022 • Xihong Yang, Yue Liu, Sihang Zhou, Xinwang Liu, En Zhu
Graph Neural Networks (GNNs) have achieved promising performance in semi-supervised node classification in recent years.
no code implementations • 11 May 2022 • Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu
To solve this problem, we propose a Simple Contrastive Graph Clustering (SCGC) algorithm to improve the existing methods from the perspectives of network architecture, data augmentation, and objective function.
no code implementations • 25 Feb 2022 • Yue Liu, Sihang Zhou, Xinwang Liu, Wenxuan Tu, Xihong Yang
Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different clusters without human annotations, is a fundamental yet challenging task.
no code implementations • 24 Feb 2022 • Xihong Yang, Xiaochang Hu, Sihang Zhou, Xinwang Liu, En Zhu
Specifically, the proposed algorithm outperforms the second best algorithm (Comatch) with 5. 3% by achieving 88. 73% classification accuracy when only two labels are available for each class on the CIFAR-10 dataset.
2 code implementations • 29 Dec 2021 • Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, En Zhu
To address this issue, we propose a novel self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN) by reducing information correlation in a dual manner.