no code implementations • 26 Dec 2024 • Ashutosh Baheti, Debanjana Chakraborty, Faeze Brahman, Ronan Le Bras, Ximing Lu, Nouha Dziri, Yejin Choi, Mark Riedl, Maarten Sap
Thus, we create Multi-Attribute Constraint Satisfaction (MACS), a generalized method capable of finetuning language models on any sequential domain to satisfy user-specified constraints on multiple external real-value attributes.
no code implementations • 5 Oct 2024 • Ximing Lu, Melanie Sclar, Skyler Hallinan, Niloofar Mireshghallah, Jiacheng Liu, Seungju Han, Allyson Ettinger, Liwei Jiang, Khyathi Chandu, Nouha Dziri, Yejin Choi
We present CREATIVITY INDEX as the first step to quantify the linguistic creativity of a text by reconstructing it from existing text snippets on the web.
no code implementations • 24 Sep 2024 • Xuhui Zhou, Hyunwoo Kim, Faeze Brahman, Liwei Jiang, Hao Zhu, Ximing Lu, Frank Xu, Bill Yuchen Lin, Yejin Choi, Niloofar Mireshghallah, Ronan Le Bras, Maarten Sap
AI agents are increasingly autonomous in their interactions with human users and tools, leading to increased interactional safety risks.
1 code implementation • 28 Aug 2024 • Jillian Fisher, Skyler Hallinan, Ximing Lu, Mitchell Gordon, Zaid Harchaoui, Yejin Choi
Authorship obfuscation, rewriting a text to intentionally obscure the identity of the author, is an important but challenging task.
no code implementations • 2 Jul 2024 • Khyathi Raghavi Chandu, Linjie Li, Anas Awadalla, Ximing Lu, Jae Sung Park, Jack Hessel, Lijuan Wang, Yejin Choi
The ability to acknowledge the inevitable uncertainty in their knowledge and reasoning is a prerequisite for AI systems to be truly truthful and reliable.
no code implementations • 29 Jun 2024 • Jaeyoung Lee, Ximing Lu, Jack Hessel, Faeze Brahman, Youngjae Yu, Yonatan Bisk, Yejin Choi, Saadia Gabriel
Given the growing influx of misinformation across news and social media, there is a critical need for systems that can provide effective real-time verification of news claims.
2 code implementations • 26 Jun 2024 • Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar, Niloofar Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, Nouha Dziri
As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training.
no code implementations • 20 Mar 2024 • JaeHun Jung, Ximing Lu, Liwei Jiang, Faeze Brahman, Peter West, Pang Wei Koh, Yejin Choi
The current winning recipe for automatic summarization is using proprietary large-scale language models (LLMs) such as ChatGPT as is, or imitation learning from them as teacher models.
1 code implementation • 13 Feb 2024 • Jillian Fisher, Ximing Lu, JaeHun Jung, Liwei Jiang, Zaid Harchaoui, Yejin Choi
The permanence of online content combined with the enhanced authorship identification techniques calls for stronger computational methods to protect the identity and privacy of online authorship when needed, e. g., blind reviews for scientific papers, anonymous online reviews, or anonymous interactions in the mental health forums.
1 code implementation • 7 Feb 2024 • Taylor Sorensen, Jared Moore, Jillian Fisher, Mitchell Gordon, Niloofar Mireshghallah, Christopher Michael Rytting, Andre Ye, Liwei Jiang, Ximing Lu, Nouha Dziri, Tim Althoff, Yejin Choi
We identify and formalize three possible ways to define and operationalize pluralism in AI systems: 1) Overton pluralistic models that present a spectrum of reasonable responses; 2) Steerably pluralistic models that can steer to reflect certain perspectives; and 3) Distributionally pluralistic models that are well-calibrated to a given population in distribution.
no code implementations • 10 Dec 2023 • Peter West, Ronan Le Bras, Taylor Sorensen, Bill Yuchen Lin, Liwei Jiang, Ximing Lu, Khyathi Chandu, Jack Hessel, Ashutosh Baheti, Chandra Bhagavatula, Yejin Choi
We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models.
2 code implementations • NeurIPS 2023 • Jae Sung Park, Jack Hessel, Khyathi Raghavi Chandu, Paul Pu Liang, Ximing Lu, Peter West, Youngjae Yu, Qiuyuan Huang, Jianfeng Gao, Ali Farhadi, Yejin Choi
Empirical results and human evaluations in a zero-shot setup demonstrate that our distillation method results in more precise VL models of reasoning compared to a baseline of passing a generated referring expression to an LLM.
1 code implementation • 4 Dec 2023 • Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chandra Bhagavatula, Yejin Choi
We analyze the effect of alignment tuning by examining the token distribution shift between base LLMs and their aligned counterpart.
1 code implementation • 13 Nov 2023 • Skyler Hallinan, Faeze Brahman, Ximing Lu, JaeHun Jung, Sean Welleck, Yejin Choi
We propose STEER: Unified Style Transfer with Expert Reinforcement, a unified frame-work developed to overcome the challenge of limited parallel data for style transfer.
1 code implementation • 13 Nov 2023 • Huihan Li, Yuting Ning, Zeyi Liao, Siyuan Wang, Xiang Lorraine Li, Ximing Lu, Wenting Zhao, Faeze Brahman, Yejin Choi, Xiang Ren
To effectively use large language models (LLMs) for real-world queries, it is imperative that they generalize to the long-tail distribution, i. e. rare examples where models exhibit low confidence.
1 code implementation • 6 Nov 2023 • Sahana Ramnath, Brihi Joshi, Skyler Hallinan, Ximing Lu, Liunian Harold Li, Aaron Chan, Jack Hessel, Yejin Choi, Xiang Ren
Results on five difficult question-answering datasets StrategyQA, QuaRel, OpenBookQA, NumerSense and QASC show that not only does MaRio improve task accuracy, but it also improves the self-rationalization quality of small LMs across the aforementioned axes better than a supervised fine-tuning (SFT) baseline.
no code implementations • 31 Oct 2023 • Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman, Linjie Li, Jena D. Hwang, Liwei Jiang, Jillian Fisher, Abhilasha Ravichander, Khyathi Chandu, Benjamin Newman, Pang Wei Koh, Allyson Ettinger, Yejin Choi
Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon -- and can therefore exceed -- their ability to understand those same types of outputs.
1 code implementation • 12 Oct 2023 • Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, Xiang Ren
The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence.
1 code implementation • 2 Sep 2023 • Taylor Sorensen, Liwei Jiang, Jena Hwang, Sydney Levine, Valentina Pyatkin, Peter West, Nouha Dziri, Ximing Lu, Kavel Rao, Chandra Bhagavatula, Maarten Sap, John Tasioulas, Yejin Choi
To improve AI systems to better reflect value pluralism, the first-order challenge is to explore the extent to which AI systems can model pluralistic human values, rights, and duties as well as their interaction.
1 code implementation • NeurIPS 2023 • Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, Yejin Choi
We formulate compositional tasks as computation graphs to systematically quantify the level of complexity, and break down reasoning steps into intermediate sub-procedures.
no code implementations • 26 May 2023 • JaeHun Jung, Peter West, Liwei Jiang, Faeze Brahman, Ximing Lu, Jillian Fisher, Taylor Sorensen, Yejin Choi
We present Impossible Distillation, a novel framework for paraphrasing and sentence summarization, that distills a high-quality dataset and model from a low-quality teacher that itself cannot perform these tasks.
1 code implementation • 24 May 2023 • Ashutosh Baheti, Ximing Lu, Faeze Brahman, Ronan Le Bras, Maarten Sap, Mark Riedl
However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning.
1 code implementation • 24 May 2023 • Ximing Lu, Faeze Brahman, Peter West, Jaehun Jang, Khyathi Chandu, Abhilasha Ravichander, Lianhui Qin, Prithviraj Ammanabrolu, Liwei Jiang, Sahana Ramnath, Nouha Dziri, Jillian Fisher, Bill Yuchen Lin, Skyler Hallinan, Xiang Ren, Sean Welleck, Yejin Choi
While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited.
1 code implementation • CVPR 2023 • Youngjae Yu, Jiwan Chung, Heeseung Yun, Jack Hessel, Jae Sung Park, Ximing Lu, Rowan Zellers, Prithviraj Ammanabrolu, Ronan Le Bras, Gunhee Kim, Yejin Choi
Language models are capable of commonsense reasoning: while domain-specific models can learn from explicit knowledge (e. g. commonsense graphs [6], ethical norms [25]), and larger models like GPT-3 manifest broad commonsense reasoning capacity.
1 code implementation • 20 Dec 2022 • Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West, Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Le Bras, Malihe Alikhani, Gunhee Kim, Maarten Sap, Yejin Choi
Data scarcity has been a long standing issue in the field of open-domain social dialogue.
2 code implementations • 20 Dec 2022 • Valentina Pyatkin, Jena D. Hwang, Vivek Srikumar, Ximing Lu, Liwei Jiang, Yejin Choi, Chandra Bhagavatula
Context is everything, even in commonsense moral reasoning.
no code implementations • 19 Dec 2022 • Chandra Bhagavatula, Jena D. Hwang, Doug Downey, Ronan Le Bras, Ximing Lu, Lianhui Qin, Keisuke Sakaguchi, Swabha Swayamdipta, Peter West, Yejin Choi
Here, we investigate an alternative that a priori seems impossible: can smaller language models (e. g., GPT-2) win over models that are orders of magnitude larger and better (e. g., GPT-3), if powered with novel commonsense distillation algorithms?
no code implementations • 31 Oct 2022 • Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, Yejin Choi
Sequence generation applications require satisfying semantic constraints, such as ensuring that programs are correct, using certain keywords, or avoiding undesirable content.
1 code implementation • 6 Oct 2022 • Jiacheng Liu, Skyler Hallinan, Ximing Lu, Pengfei He, Sean Welleck, Hannaneh Hajishirzi, Yejin Choi
Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.
1 code implementation • 26 May 2022 • Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Ammanabrolu, Yejin Choi
Large-scale language models often learn behaviors that are misaligned with user expectations.
1 code implementation • 25 May 2022 • Hyunwoo Kim, Youngjae Yu, Liwei Jiang, Ximing Lu, Daniel Khashabi, Gunhee Kim, Yejin Choi, Maarten Sap
With this dataset, we introduce a dialogue safety detection module, Canary, capable of generating RoTs given conversational context, and a socially-informed dialogue agent, Prost.
Ranked #1 on Dialogue Safety Prediction on ProsocialDialog
1 code implementation • 25 May 2022 • Youngjae Yu, Jiwan Chung, Heeseung Yun, Jack Hessel, JaeSung Park, Ximing Lu, Prithviraj Ammanabrolu, Rowan Zellers, Ronan Le Bras, Gunhee Kim, Yejin Choi
Large language models readily adapt to novel settings, even without task-specific training data.
1 code implementation • 25 May 2022 • Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, Yejin Choi
Theorem proving in natural mathematical language - the mixture of symbolic and natural language used by humans - plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence.
1 code implementation • 19 May 2022 • Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Hao Peng, Ximing Lu, Dragomir Radev, Yejin Choi, Noah A. Smith
Our extensive evaluations on machine translation and scientific paper summarization demonstrate that Twist decoding substantially outperforms each model decoded in isolation over various scenarios, including cases where domain-specific and general-purpose models are both available.
no code implementations • CVPR 2022 • Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Mohammadreza Salehi, Aditya Kusupati, Jack Hessel, Ali Farhadi, Yejin Choi
Given a video, we replace snippets of text and audio with a MASK token; the model learns by choosing the correct masked-out snippet.
Ranked #6 on Action Classification on Kinetics-600 (using extra training data)
1 code implementation • NAACL 2022 • Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, Yejin Choi
To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction.
Ranked #1 on Text Generation on ROCStories
1 code implementation • NAACL 2022 • Yanpeng Zhao, Jack Hessel, Youngjae Yu, Ximing Lu, Rowan Zellers, Yejin Choi
In a difficult zero-shot setting with no paired audio-text data, our model demonstrates state-of-the-art zero-shot performance on the ESC50 and US8K audio classification tasks, and even surpasses the supervised state of the art for Clotho caption retrieval (with audio queries) by 2. 2\% R@1.
1 code implementation • ACL 2022 • Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi, Hannaneh Hajishirzi
It remains an open question whether incorporating external knowledge benefits commonsense reasoning while maintaining the flexibility of pretrained sequence models.
1 code implementation • NAACL 2022 • Peter West, Chandra Bhagavatula, Jack Hessel, Jena D. Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, Sean Welleck, Yejin Choi
We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
1 code implementation • NeurIPS 2021 • Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, Yejin Choi
As humans, we understand events in the visual world contextually, performing multimodal reasoning across time to make inferences about the past, present, and future.
1 code implementation • ACL 2021 • Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A. Smith, Yejin Choi
Despite recent advances in natural language generation, it remains challenging to control attributes of generated text.
no code implementations • Findings (ACL) 2021 • Yue Dong, Chandra Bhagavatula, Ximing Lu, Jena D. Hwang, Antoine Bosselut, Jackie Chi Kit Cheung, Yejin Choi
Despite considerable advancements with deep neural language models (LMs), neural text generation still suffers from degeneration: the generated text is repetitive, generic, self-contradictory, and often lacks commonsense.
1 code implementation • AKBC 2021 • Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, Antoine Bosselut
Our results show that commonsense knowledge models can rapidly adapt from limited examples, indicating that KG fine-tuning serves to learn an interface to encoded knowledge learned during pretraining.
no code implementations • NAACL 2021 • Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples.
no code implementations • ACL 2021 • Peter West, Ximing Lu, Ari Holtzman, Chandra Bhagavatula, Jena Hwang, Yejin Choi
In this paper, we present Reflective Decoding, a novel unsupervised algorithm that allows for direct application of unidirectional LMs to non-sequential tasks.
1 code implementation • 25 Jul 2020 • Sachin Mehta, Ximing Lu, Donald Weaver, Joann G. Elmore, Hannaneh Hajishirzi, Linda Shapiro
HATNet extends the bag-of-words approach and uses self-attention to encode global information, allowing it to learn representations from clinically relevant tissue structures without any explicit supervision.