1 code implementation • ECCV 2020 • Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan, Honglak Lee, Bo Li
Deep neural networks (DNNs) have achieved great successes in various vision applications due to their strong expressive power.
no code implementations • ICCV 2023 • Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R. Qi, Xinchen Yan, Scott Ettinger, Dragomir Anguelov
Closed-set 3D perception models trained on only a pre-defined set of object categories can be inadequate for safety critical applications such as autonomous driving where new object types can be encountered after deployment.
no code implementations • CVPR 2023 • Bokui Shen, Xinchen Yan, Charles R. Qi, Mahyar Najibi, Boyang Deng, Leonidas Guibas, Yin Zhou, Dragomir Anguelov
Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving.
1 code implementation • CVPR 2023 • Congyue Deng, Chiyu "Max'' Jiang, Charles R. Qi, Xinchen Yan, Yin Zhou, Leonidas Guibas, Dragomir Anguelov
Formulating single-view reconstruction as an image-conditioned 3D generation problem, we optimize the NeRF representations by minimizing a diffusion loss on its arbitrary view renderings with a pretrained image diffusion model under the input-view constraint.
no code implementations • 14 Oct 2022 • Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R. Qi, Xinchen Yan, Scott Ettinger, Dragomir Anguelov
Learning-based perception and prediction modules in modern autonomous driving systems typically rely on expensive human annotation and are designed to perceive only a handful of predefined object categories.
1 code implementation • 15 Jun 2022 • Jieru Mei, Alex Zihao Zhu, Xinchen Yan, Hang Yan, Siyuan Qiao, Yukun Zhu, Liang-Chieh Chen, Henrik Kretzschmar, Dragomir Anguelov
We therefore present the Waymo Open Dataset: Panoramic Video Panoptic Segmentation Dataset, a large-scale dataset that offers high-quality panoptic segmentation labels for autonomous driving.
2 code implementations • CVPR 2022 • Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T. Barron, Henrik Kretzschmar
We present Block-NeRF, a variant of Neural Radiance Fields that can represent large-scale environments.
no code implementations • 17 Jan 2021 • James Tu, Huichen Li, Xinchen Yan, Mengye Ren, Yun Chen, Ming Liang, Eilyan Bitar, Ersin Yumer, Raquel Urtasun
Yet, there have been limited studies on the adversarial robustness of multi-modal models that fuse LiDAR features with image features.
no code implementations • CVPR 2021 • Ze Yang, Shenlong Wang, Sivabalan Manivasagam, Zeng Huang, Wei-Chiu Ma, Xinchen Yan, Ersin Yumer, Raquel Urtasun
Constructing and animating humans is an important component for building virtual worlds in a wide variety of applications such as virtual reality or robotics testing in simulation.
no code implementations • CVPR 2021 • Yun Chen, Frieda Rong, Shivam Duggal, Shenlong Wang, Xinchen Yan, Sivabalan Manivasagam, Shangjie Xue, Ersin Yumer, Raquel Urtasun
Scalable sensor simulation is an important yet challenging open problem for safety-critical domains such as self-driving.
no code implementations • 7 Jan 2021 • Katie Luo, Sergio Casas, Renjie Liao, Xinchen Yan, Yuwen Xiong, Wenyuan Zeng, Raquel Urtasun
On two large-scale real-world datasets, nuScenes and ATG4D, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods, while also matching their performance in pedestrian motion forecasting metrics.
no code implementations • 24 May 2020 • Kibok Lee, Zhuoyuan Chen, Xinchen Yan, Raquel Urtasun, Ersin Yumer
Our shape-aware adversarial attacks are orthogonal to existing point cloud based attacks and shed light on the vulnerability of 3D deep neural networks.
1 code implementation • ECCV 2020 • Kaichun Mo, He Wang, Xinchen Yan, Leonidas J. Guibas
3D generative shape modeling is a fundamental research area in computer vision and interactive computer graphics, with many real-world applications.
no code implementations • 21 Jun 2019 • Xinchen Yan, Mohi Khansari, Jasmine Hsu, Yuanzheng Gong, Yunfei Bai, Sören Pirk, Honglak Lee
Training a deep network policy for robot manipulation is notoriously costly and time consuming as it depends on collecting a significant amount of real world data.
1 code implementation • 19 Jun 2019 • Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan, Honglak Lee, Bo Li
In this paper, we aim to explore the impact of semantic manipulation on DNNs predictions by manipulating the semantic attributes of images and generate "unrestricted adversarial examples".
1 code implementation • NeurIPS 2018 • Seunghoon Hong, Xinchen Yan, Thomas Huang, Honglak Lee
In this work, we present a novel hierarchical framework for semantic image manipulation.
1 code implementation • ECCV 2018 • Xinchen Yan, Akash Rastogi, Ruben Villegas, Kalyan Sunkavalli, Eli Shechtman, Sunil Hadap, Ersin Yumer, Honglak Lee
Our model jointly learns a feature embedding for motion modes (that the motion sequence can be reconstructed from) and a feature transformation that represents the transition of one motion mode to the next motion mode.
Ranked #7 on
Human Pose Forecasting
on Human3.6M
(ADE metric)
1 code implementation • 24 Aug 2017 • Xinchen Yan, Jasmine Hsu, Mohi Khansari, Yunfei Bai, Arkanath Pathak, Abhinav Gupta, James Davidson, Honglak Lee
Our contributions are fourfold: (1) To best of our knowledge, we are presenting for the first time a method to learn a 6-DOF grasping net from RGBD input; (2) We build a grasping dataset from demonstrations in virtual reality with rich sensory and interaction annotations.
2 code implementations • NeurIPS 2016 • Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, Honglak Lee
We demonstrate the ability of the model in generating 3D volume from a single 2D image with three sets of experiments: (1) learning from single-class objects; (2) learning from multi-class objects and (3) testing on novel object classes.
no code implementations • 11 Oct 2016 • Weiran Wang, Xinchen Yan, Honglak Lee, Karen Livescu
We present deep variational canonical correlation analysis (VCCA), a deep multi-view learning model that extends the latent variable model interpretation of linear CCA to nonlinear observation models parameterized by deep neural networks.
40 code implementations • 17 May 2016 • Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee
Automatic synthesis of realistic images from text would be interesting and useful, but current AI systems are still far from this goal.
1 code implementation • 2 Dec 2015 • Xinchen Yan, Jimei Yang, Kihyuk Sohn, Honglak Lee
This paper investigates a novel problem of generating images from visual attributes.
1 code implementation • NeurIPS 2015 • Kihyuk Sohn, Honglak Lee, Xinchen Yan
The model is trained efficiently in the framework of stochastic gradient variational Bayes, and allows a fast prediction using stochastic feed-forward inference.
Ranked #1 on
Structured Prediction
on MNIST