1 code implementation • 20 Dec 2024 • Xinxi Lyu, Yizhong Wang, Hannaneh Hajishirzi, Pradeep Dasigi
Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges.
1 code implementation • 31 Jan 2024 • Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, Kyle Lo
As a result, it is challenging to conduct and advance scientific research on language modeling, such as understanding how training data impacts model capabilities and limitations.
4 code implementations • 23 May 2023 • Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, Hannaneh Hajishirzi
Evaluating the factuality of long-form text generated by large language models (LMs) is non-trivial because (1) generations often contain a mixture of supported and unsupported pieces of information, making binary judgments of quality inadequate, and (2) human evaluation is time-consuming and costly.
2 code implementations • 19 Dec 2022 • Xinxi Lyu, Sewon Min, Iz Beltagy, Luke Zettlemoyer, Hannaneh Hajishirzi
Although large language models can be prompted for both zero- and few-shot learning, performance drops significantly when no demonstrations are available.
2 code implementations • 25 Feb 2022 • Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer
Large language models (LMs) are able to in-context learn -- perform a new task via inference alone by conditioning on a few input-label pairs (demonstrations) and making predictions for new inputs.