no code implementations • 3 Nov 2022 • Xinzhe Luo, Xiahai Zhuang
This paper presents a generic probabilistic framework for estimating the statistical dependency and finding the anatomical correspondences among an arbitrary number of medical images.
no code implementations • 6 Jun 2022 • Xin Wang, Xinzhe Luo, Xiahai Zhuang
Multimodal groupwise registration aligns internal structures in a group of medical images.
no code implementations • 10 Jan 2022 • Lei LI, Fuping Wu, Sihan Wang, Xinzhe Luo, Carlos Martin-Isla, Shuwei Zhai, Jianpeng Zhang, Yanfei Liu7, Zhen Zhang, Markus J. Ankenbrand, Haochuan Jiang, Xiaoran Zhang, Linhong Wang, Tewodros Weldebirhan Arega, Elif Altunok, Zhou Zhao, Feiyan Li, Jun Ma, Xiaoping Yang, Elodie Puybareau, Ilkay Oksuz, Stephanie Bricq, Weisheng Li, Kumaradevan Punithakumar, Sotirios A. Tsaftaris, Laura M. Schreiber, Mingjing Yang, Guocai Liu, Yong Xia, Guotai Wang, Sergio Escalera, Xiahai Zhuang
Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on myocardium is the key to this assessment.
no code implementations • 20 May 2021 • Dengqiang Jia, Shangqi Gao, Qunlong Chen, Xinzhe Luo, Xiahai Zhuang
These methods estimate the parameterized transformations between pairs of moving and fixed images through the optimization of the network parameters during training.
no code implementations • 17 Nov 2020 • Yuncheng Zhou, Ke Zhang, Xinzhe Luo, Sihan Wang, Xiahai Zhuang
Pathological area segmentation in cardiac magnetic resonance (MR) images plays a vital role in the clinical diagnosis of cardiovascular diseases.
1 code implementation • 28 Jun 2020 • Xinzhe Luo, Xiahai Zhuang
Current deep-learning-based registration algorithms often exploit intensity-based similarity measures as the loss function, where dense correspondence between a pair of moving and fixed images is optimized through backpropagation during training.
no code implementations • 22 Jun 2020 • Xiahai Zhuang, Jiahang Xu, Xinzhe Luo, Chen Chen, Cheng Ouyang, Daniel Rueckert, Victor M. Campello, Karim Lekadir, Sulaiman Vesal, Nishant Ravikumar, Yashu Liu, Gongning Luo, Jingkun Chen, Hongwei Li, Buntheng Ly, Maxime Sermesant, Holger Roth, Wentao Zhu, Jiexiang Wang, Xinghao Ding, Xinyue Wang, Sen yang, Lei LI
In addition, the paired MS-CMR images could enable algorithms to combine the complementary information from the other sequences for the segmentation of LGE CMR.
no code implementations • 26 Apr 2020 • Zhaohan Xiong, Qing Xia, Zhiqiang Hu, Ning Huang, Cheng Bian, Yefeng Zheng, Sulaiman Vesal, Nishant Ravikumar, Andreas Maier, Xin Yang, Pheng-Ann Heng, Dong Ni, Caizi Li, Qianqian Tong, Weixin Si, Elodie Puybareau, Younes Khoudli, Thierry Geraud, Chen Chen, Wenjia Bai, Daniel Rueckert, Lingchao Xu, Xiahai Zhuang, Xinzhe Luo, Shuman Jia, Maxime Sermesant, Yashu Liu, Kuanquan Wang, Davide Borra, Alessandro Masci, Cristiana Corsi, Coen de Vente, Mitko Veta, Rashed Karim, Chandrakanth Jayachandran Preetha, Sandy Engelhardt, Menyun Qiao, Yuanyuan Wang, Qian Tao, Marta Nunez-Garcia, Oscar Camara, Nicolo Savioli, Pablo Lamata, Jichao Zhao
Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment.
no code implementations • 18 Jun 2019 • Qian Yue, Xinzhe Luo, Qing Ye, Lingchao Xu, Xiahai Zhuang
The proposed network, referred to as SRSCN, comprises a shape reconstruction neural network (SRNN) and a spatial constraint network (SCN).
no code implementations • 26 Feb 2019 • Jiahang Xu, Fangyang Jiao, Yechong Huang, Xinzhe Luo, Qian Xu, Ling Li, Xueling Liu, Chuantao Zuo, Ping Wu, Xiahai Zhuang
Methods: In this paper, we proposed an automatic, end-to-end, multi-modality diagnosis framework, including segmentation, registration, feature generation and machine learning, to process the information of the striatum for the diagnosis of PD.