no code implementations • 3 Mar 2025 • Elizabeth G. Campolongo, Yuan-Tang Chou, Ekaterina Govorkova, Wahid Bhimji, Wei-Lun Chao, Chris Harris, Shih-Chieh Hsu, Hilmar Lapp, Mark S. Neubauer, Josephine Namayanja, Aneesh Subramanian, Philip Harris, Advaith Anand, David E. Carlyn, Subhankar Ghosh, Christopher Lawrence, Eric Moreno, Ryan Raikman, Jiaman Wu, Ziheng Zhang, Bayu Adhi, Mohammad Ahmadi Gharehtoragh, Saúl Alonso Monsalve, Marta Babicz, Furqan Baig, Namrata Banerji, William Bardon, Tyler Barna, Tanya Berger-Wolf, Adji Bousso Dieng, Micah Brachman, Quentin Buat, David C. Y. Hui, Phuong Cao, Franco Cerino, Yi-Chun Chang, Shivaji Chaulagain, An-Kai Chen, Deming Chen, Eric Chen, Chia-Jui Chou, Zih-Chen Ciou, Miles Cochran-Branson, Artur Cordeiro Oudot Choi, Michael Coughlin, Matteo Cremonesi, Maria Dadarlat, Peter Darch, Malina Desai, Daniel Diaz, Steven Dillmann, Javier Duarte, Isla Duporge, Urbas Ekka, Saba Entezari Heravi, Hao Fang, Rian Flynn, Geoffrey Fox, Emily Freed, Hang Gao, Jing Gao, Julia Gonski, Matthew Graham, Abolfazl Hashemi, Scott Hauck, James Hazelden, Joshua Henry Peterson, Duc Hoang, Wei Hu, Mirco Huennefeld, David Hyde, Vandana Janeja, Nattapon Jaroenchai, Haoyi Jia, Yunfan Kang, Maksim Kholiavchenko, Elham E. Khoda, Sangin Kim, Aditya Kumar, Bo-Cheng Lai, Trung Le, Chi-Wei Lee, Janghyeon Lee, Shaocheng Lee, Suzan van der Lee, Charles Lewis, Haitong Li, Haoyang Li, Henry Liao, Mia Liu, Xiaolin Liu, Xiulong Liu, Vladimir Loncar, Fangzheng Lyu, Ilya Makarov, Abhishikth Mallampalli Chen-Yu Mao, Alexander Michels, Alexander Migala, Farouk Mokhtar, Mathieu Morlighem, Min Namgung, Andrzej Novak, Andrew Novick, Amy Orsborn, Anand Padmanabhan, Jia-Cheng Pan, Sneh Pandya, Zhiyuan Pei, Ana Peixoto, George Percivall, Alex Po Leung, Sanjay Purushotham, Zhiqiang Que, Melissa Quinnan, Arghya Ranjan, Dylan Rankin, Christina Reissel, Benedikt Riedel, Dan Rubenstein, Argyro Sasli, Eli Shlizerman, Arushi Singh, Kim Singh, Eric R. Sokol, Arturo Sorensen, Yu Su, Mitra Taheri, Vaibhav Thakkar, Ann Mariam Thomas, Eric Toberer, Chenghan Tsai, Rebecca Vandewalle, Arjun Verma, Ricco C. Venterea, He Wang, Jianwu Wang, Sam Wang, Shaowen Wang, Gordon Watts, Jason Weitz, Andrew Wildridge, Rebecca Williams, Scott Wolf, Yue Xu, Jianqi Yan, Jai Yu, Yulei Zhang, Haoran Zhao, Ying Zhao, Yibo Zhong
We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR).
no code implementations • 8 Nov 2024 • Xiulong Liu, Kun Su, Eli Shlizerman
Experiments show that when VATT is compared to existing video-to-audio generation methods in objective metrics, it achieves competitive performance when the audio caption is not provided.
Ranked #8 on
Video-to-Sound Generation
on VGG-Sound
no code implementations • 28 Oct 2024 • Claudius Krause, Michele Faucci Giannelli, Gregor Kasieczka, Benjamin Nachman, Dalila Salamani, David Shih, Anna Zaborowska, Oz Amram, Kerstin Borras, Matthew R. Buckley, Erik Buhmann, Thorsten Buss, Renato Paulo Da Costa Cardoso, Anthony L. Caterini, Nadezda Chernyavskaya, Federico A. G. Corchia, Jesse C. Cresswell, Sascha Diefenbacher, Etienne Dreyer, Vijay Ekambaram, Engin Eren, Florian Ernst, Luigi Favaro, Matteo Franchini, Frank Gaede, Eilam Gross, Shih-Chieh Hsu, Kristina Jaruskova, Benno Käch, Jayant Kalagnanam, Raghav Kansal, Taewoo Kim, Dmitrii Kobylianskii, Anatolii Korol, William Korcari, Dirk Krücker, Katja Krüger, Marco Letizia, Shu Li, Qibin Liu, Xiulong Liu, Gabriel Loaiza-Ganem, Thandikire Madula, Peter McKeown, Isabell-A. Melzer-Pellmann, Vinicius Mikuni, Nam Nguyen, Ayodele Ore, Sofia Palacios Schweitzer, Ian Pang, Kevin Pedro, Tilman Plehn, Witold Pokorski, Huilin Qu, Piyush Raikwar, John A. Raine, Humberto Reyes-Gonzalez, Lorenzo Rinaldi, Brendan Leigh Ross, Moritz A. W. Scham, Simon Schnake, Chase Shimmin, Eli Shlizerman, Nathalie Soybelman, Mudhakar Srivatsa, Kalliopi Tsolaki, Sofia Vallecorsa, Kyongmin Yeo, Rui Zhang
We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge.
1 code implementation • 27 Sep 2024 • Kun Su, Xiulong Liu, Eli Shlizerman
Previous studies of audio-visual modalities primarily focused on either audio-visual representation learning or generative modeling of a modality conditioned on the other, creating a disconnect between these two branches.
no code implementations • 10 May 2024 • Qibin Liu, Chase Shimmin, Xiulong Liu, Eli Shlizerman, Shu Li, Shih-Chieh Hsu
We introduce a novel machine learning method developed for the fast simulation of calorimeter detector response, adapting vector-quantized variational autoencoder (VQ-VAE).
1 code implementation • 10 Oct 2023 • Xiulong Liu, Zhikang Dong, Peng Zhang
In recent years, there has been a growing emphasis on the intersection of audio, vision, and text modalities, driving forward the advancements in multimodal research.
1 code implementation • CVPR 2024 • Zhikang Dong, Bin Chen, Xiulong Liu, Pawel Polak, Peng Zhang
The reasoning module, equipped with the power of Large Language Model (Vicuna-7B) and extended to multi-modal inputs, is able to provide reasonable explanation for the recommended music.
no code implementations • 6 Jun 2023 • Xiulong Liu, Sudipta Paul, Moitreya Chatterjee, Anoop Cherian
Audio-visual navigation of an agent towards locating an audio goal is a challenging task especially when the audio is sporadic or the environment is noisy.
no code implementations • 22 Feb 2023 • Zhizhi Yu, Di Jin, Cuiying Huo, Zhiqiang Wang, Xiulong Liu, Heng Qi, Jia Wu, Lingfei Wu
Graph neural networks for trust evaluation typically adopt a straightforward way such as one-hot or node2vec to comprehend node characteristics, which ignores the valuable semantic knowledge attached to nodes.
no code implementations • NeurIPS 2021 • Kun Su, Xiulong Liu, Eli Shlizerman
It is often the case that the experience of watching the video can be enhanced by adding a musical soundtrack that is in-sync with the rhythmic features of these activities.
no code implementations • 7 Dec 2020 • Kun Su, Xiulong Liu, Eli Shlizerman
We propose a novel system that takes as an input body movements of a musician playing a musical instrument and generates music in an unsupervised setting.
1 code implementation • NeurIPS 2020 • Kun Su, Xiulong Liu, Eli Shlizerman
We present a novel system that gets as an input video frames of a musician playing the piano and generates the music for that video.
1 code implementation • CVPR 2020 • Kun Su, Xiulong Liu, Eli Shlizerman
Given inputs of body keypoints sequences obtained during various movements, our system associates the sequences with actions.