Search Results for author: Xiwen Liang

Found 8 papers, 2 papers with code

Visual Exemplar Driven Task-Prompting for Unified Perception in Autonomous Driving

no code implementations CVPR 2023 Xiwen Liang, Minzhe Niu, Jianhua Han, Hang Xu, Chunjing Xu, Xiaodan Liang

Multi-task learning has emerged as a powerful paradigm to solve a range of tasks simultaneously with good efficiency in both computation resources and inference time.

Autonomous Driving Lane Detection +4

NLIP: Noise-robust Language-Image Pre-training

no code implementations14 Dec 2022 Runhui Huang, Yanxin Long, Jianhua Han, Hang Xu, Xiwen Liang, Chunjing Xu, Xiaodan Liang

Large-scale cross-modal pre-training paradigms have recently shown ubiquitous success on a wide range of downstream tasks, e. g., zero-shot classification, retrieval and image captioning.

Image Captioning Memorization +3

Effective Adaptation in Multi-Task Co-Training for Unified Autonomous Driving

no code implementations19 Sep 2022 Xiwen Liang, Yangxin Wu, Jianhua Han, Hang Xu, Chunjing Xu, Xiaodan Liang

Aiming towards a holistic understanding of multiple downstream tasks simultaneously, there is a need for extracting features with better transferability.

Autonomous Driving Multi-Task Learning +4

ADAPT: Vision-Language Navigation with Modality-Aligned Action Prompts

no code implementations CVPR 2022 Bingqian Lin, Yi Zhu, Zicong Chen, Xiwen Liang, Jianzhuang Liu, Xiaodan Liang

Vision-Language Navigation (VLN) is a challenging task that requires an embodied agent to perform action-level modality alignment, i. e., make instruction-asked actions sequentially in complex visual environments.

Vision-Language Navigation

Visual-Language Navigation Pretraining via Prompt-based Environmental Self-exploration

1 code implementation ACL 2022 Xiwen Liang, Fengda Zhu, Lingling Li, Hang Xu, Xiaodan Liang

To improve the ability of fast cross-domain adaptation, we propose Prompt-based Environmental Self-exploration (ProbES), which can self-explore the environments by sampling trajectories and automatically generates structured instructions via a large-scale cross-modal pretrained model (CLIP).

Domain Adaptation Vision-Language Navigation

Contrastive Instruction-Trajectory Learning for Vision-Language Navigation

1 code implementation8 Dec 2021 Xiwen Liang, Fengda Zhu, Yi Zhu, Bingqian Lin, Bing Wang, Xiaodan Liang

The vision-language navigation (VLN) task requires an agent to reach a target with the guidance of natural language instruction.

Contrastive Learning Navigate +1

SODA10M: A Large-Scale 2D Self/Semi-Supervised Object Detection Dataset for Autonomous Driving

no code implementations21 Jun 2021 Jianhua Han, Xiwen Liang, Hang Xu, Kai Chen, Lanqing Hong, Jiageng Mao, Chaoqiang Ye, Wei zhang, Zhenguo Li, Xiaodan Liang, Chunjing Xu

Experiments show that SODA10M can serve as a promising pre-training dataset for different self-supervised learning methods, which gives superior performance when fine-tuning with different downstream tasks (i. e., detection, semantic/instance segmentation) in autonomous driving domain.

Autonomous Driving Instance Segmentation +5

SOON: Scenario Oriented Object Navigation with Graph-based Exploration

no code implementations CVPR 2021 Fengda Zhu, Xiwen Liang, Yi Zhu, Xiaojun Chang, Xiaodan Liang

In this task, an agent is required to navigate from an arbitrary position in a 3D embodied environment to localize a target following a scene description.

Navigate Visual Navigation

Cannot find the paper you are looking for? You can Submit a new open access paper.