Search Results for author: Xuan Kan

Found 17 papers, 11 papers with code

Parameter-Efficient Transfer Learning under Federated Learning for Automatic Speech Recognition

no code implementations19 Aug 2024 Xuan Kan, Yonghui Xiao, Tien-Ju Yang, Nanxin Chen, Rajiv Mathews

This work explores the challenge of enhancing Automatic Speech Recognition (ASR) model performance across various user-specific domains while preserving user data privacy.

Automatic Speech Recognition Automatic Speech Recognition (ASR) +4

BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations

no code implementations30 Apr 2024 Kaiqiao Han, Yi Yang, Zijie Huang, Xuan Kan, Yang Yang, Ying Guo, Lifang He, Liang Zhan, Yizhou Sun, Wei Wang, Carl Yang

Brain network analysis is vital for understanding the neural interactions regarding brain structures and functions, and identifying potential biomarkers for clinical phenotypes.

Irregular Time Series Missing Values +1

Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM

no code implementations19 Feb 2024 Hejie Cui, Xinyu Fang, ran Xu, Xuan Kan, Joyce C. Ho, Carl Yang

While there has been a lot of research on representation learning of structured EHR data, the fusion of different types of EHR data (multimodal fusion) is not well studied.

Decision Making Representation Learning

Dynamic Brain Transformer with Multi-level Attention for Functional Brain Network Analysis

1 code implementation5 Sep 2023 Xuan Kan, Antonio Aodong Chen Gu, Hejie Cui, Ying Guo, Carl Yang

However, the conventional approach involving static brain network analysis offers limited potential in capturing the dynamism of brain function.

A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises

no code implementations7 Jun 2023 Hejie Cui, Jiaying Lu, ran Xu, Shiyu Wang, Wenjing Ma, Yue Yu, Shaojun Yu, Xuan Kan, Chen Ling, Liang Zhao, Zhaohui S. Qin, Joyce C. Ho, Tianfan Fu, Jing Ma, Mengdi Huai, Fei Wang, Carl Yang

This comprehensive review aims to provide an overview of the current state of Healthcare Knowledge Graphs (HKGs), including their construction, utilization models, and applications across various healthcare and biomedical research domains.

Knowledge Graphs

R-Mixup: Riemannian Mixup for Biological Networks

no code implementations5 Jun 2023 Xuan Kan, Zimu Li, Hejie Cui, Yue Yu, ran Xu, Shaojun Yu, Zilong Zhang, Ying Guo, Carl Yang

Biological networks are commonly used in biomedical and healthcare domains to effectively model the structure of complex biological systems with interactions linking biological entities.

Data Augmentation

Transformer-Based Hierarchical Clustering for Brain Network Analysis

1 code implementation6 May 2023 Wei Dai, Hejie Cui, Xuan Kan, Ying Guo, Sanne van Rooij, Carl Yang

Brain networks, graphical models such as those constructed from MRI, have been widely used in pathological prediction and analysis of brain functions.

Clustering

Neighborhood-Regularized Self-Training for Learning with Few Labels

1 code implementation10 Jan 2023 ran Xu, Yue Yu, Hejie Cui, Xuan Kan, Yanqiao Zhu, Joyce Ho, Chao Zhang, Carl Yang

Our further analysis demonstrates that our proposed data selection strategy reduces the noise of pseudo labels by 36. 8% and saves 57. 3% of the time when compared with the best baseline.

Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with Graph Neural Networks

1 code implementation1 Nov 2022 Yue Yu, Xuan Kan, Hejie Cui, ran Xu, Yujia Zheng, Xiangchen Song, Yanqiao Zhu, Kun Zhang, Razieh Nabi, Ying Guo, Chao Zhang, Carl Yang

To better adapt GNNs for fMRI analysis, we propose TBDS, an end-to-end framework based on \underline{T}ask-aware \underline{B}rain connectivity \underline{D}AG (short for Directed Acyclic Graph) \underline{S}tructure generation for fMRI analysis.

Time Series Time Series Analysis

Brain Network Transformer

2 code implementations13 Oct 2022 Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, Carl Yang

Human brains are commonly modeled as networks of Regions of Interest (ROIs) and their connections for the understanding of brain functions and mental disorders.

Clustering

Data-Efficient Brain Connectome Analysis via Multi-Task Meta-Learning

1 code implementation9 Jun 2022 Yi Yang, Yanqiao Zhu, Hejie Cui, Xuan Kan, Lifang He, Ying Guo, Carl Yang

Specifically, we propose to meta-train the model on datasets of large sample sizes and transfer the knowledge to small datasets.

Meta-Learning

FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation

1 code implementation25 May 2022 Xuan Kan, Hejie Cui, Joshua Lukemire, Ying Guo, Carl Yang

In particular, we formulate (1) prominent region of interest (ROI) features extraction, (2) brain networks generation, and (3) clinical predictions with GNNs, in an end-to-end trainable model under the guidance of particular prediction tasks.

Graph Neural Network Time Series +1

Effective and Interpretable fMRI Analysis via Functional Brain Network Generation

no code implementations23 Jul 2021 Xuan Kan, Hejie Cui, Ying Guo, Carl Yang

Recent studies in neuroscience show great potential of functional brain networks constructed from fMRI data for popularity modeling and clinical predictions.

Prediction

Zero-Shot Scene Graph Relation Prediction through Commonsense Knowledge Integration

1 code implementation11 Jul 2021 Xuan Kan, Hejie Cui, Carl Yang

Relation prediction among entities in images is an important step in scene graph generation (SGG), which further impacts various visual understanding and reasoning tasks.

Graph Generation Graph Mining +4

Autonomous Learning for Face Recognition in the Wild via Ambient Wireless Cues

1 code implementation14 Aug 2019 Chris Xiaoxuan Lu, Xuan Kan, Bowen Du, Changhao Chen, Hongkai Wen, Andrew Markham, Niki Trigoni, John Stankovic

Inspired by the fact that most people carry smart wireless devices with them, e. g. smartphones, we propose to use this wireless identifier as a supervisory label.

Face Recognition

Cannot find the paper you are looking for? You can Submit a new open access paper.