no code implementations • 27 Sep 2024 • Marc de Gennes, Adrien Lesage, Martin Denais, Xuan-Nga Cao, Simon Chang, Pierre Van Remoortere, Cyrille Dakhlia, Rachid Riad
Using the Callyope-GP and Androids datasets, we evaluated the models' effectiveness across different languages and speech tasks, aiming to enhance the generalizability of speech-based mental health diagnostics.
no code implementations • 12 Oct 2020 • Ewan Dunbar, Julien Karadayi, Mathieu Bernard, Xuan-Nga Cao, Robin Algayres, Lucas Ondel, Laurent Besacier, Sakriani Sakti, Emmanuel Dupoux
We present the Zero Resource Speech Challenge 2020, which aims at learning speech representations from raw audio signals without any labels.
1 code implementation • LREC 2020 • Hadrien Titeux, Rachid Riad, Xuan-Nga Cao, Nicolas Hamilakis, Kris Madden, Alejandrina Cristia, Anne-Catherine Bachoud-Lévi, Emmanuel Dupoux
We introduce Seshat, a new, simple and open-source software to efficiently manage annotations of speech corpora.
no code implementations • 25 Apr 2019 • Ewan Dunbar, Robin Algayres, Julien Karadayi, Mathieu Bernard, Juan Benjumea, Xuan-Nga Cao, Lucie Miskic, Charlotte Dugrain, Lucas Ondel, Alan W. black, Laurent Besacier, Sakriani Sakti, Emmanuel Dupoux
We present the Zero Resource Speech Challenge 2019, which proposes to build a speech synthesizer without any text or phonetic labels: hence, TTS without T (text-to-speech without text).
no code implementations • LREC 2014 • Bogdan Ludusan, Maarten Versteegh, Aren Jansen, Guillaume Gravier, Xuan-Nga Cao, Mark Johnson, Emmanuel Dupoux
The unsupervised discovery of linguistic terms from either continuous phoneme transcriptions or from raw speech has seen an increasing interest in the past years both from a theoretical and a practical standpoint.