no code implementations • 15 Mar 2024 • Yongquan He, Xuancheng Huang, Minghao Tang, Lingxun Meng, Xiang Li, Wei Lin, Wenyuan Zhang, Yifu Gao
Recent methods try to alleviate the CF problem by modifying models or replaying data, which may only remember the surface-level pattern of instructions and get confused on held-out tasks.
1 code implementation • 19 Dec 2022 • Xuancheng Huang, Zijun Liu, Peng Li, Tao Li, Maosong Sun, Yang Liu
Recently, multi-aspect controllable text generation that controls the generated text in multiple aspects (e. g., sentiment, topic, and keywords) has attracted increasing attention.
no code implementations • 27 Dec 2021 • Yuan YAO, Qingxiu Dong, Jian Guan, Boxi Cao, Zhengyan Zhang, Chaojun Xiao, Xiaozhi Wang, Fanchao Qi, Junwei Bao, Jinran Nie, Zheni Zeng, Yuxian Gu, Kun Zhou, Xuancheng Huang, Wenhao Li, Shuhuai Ren, Jinliang Lu, Chengqiang Xu, Huadong Wang, Guoyang Zeng, Zile Zhou, Jiajun Zhang, Juanzi Li, Minlie Huang, Rui Yan, Xiaodong He, Xiaojun Wan, Xin Zhao, Xu sun, Yang Liu, Zhiyuan Liu, Xianpei Han, Erhong Yang, Zhifang Sui, Maosong Sun
We argue that for general-purpose language intelligence evaluation, the benchmark itself needs to be comprehensive and systematic.
1 code implementation • ACL 2021 • Xuancheng Huang, Jingfang Xu, Maosong Sun, Yang Liu
Although directly finetuning pretrained models on MSG tasks and concatenating multiple sources into a single long sequence is regarded as a simple method to transfer pretrained models to MSG tasks, we conjecture that the direct finetuning method leads to catastrophic forgetting and solely relying on pretrained self-attention layers to capture cross-source information is not sufficient.
no code implementations • 31 Dec 2020 • Zhixing Tan, Shuo Wang, Zonghan Yang, Gang Chen, Xuancheng Huang, Maosong Sun, Yang Liu
Machine translation (MT) is an important sub-field of natural language processing that aims to translate natural languages using computers.
1 code implementation • 14 Jul 2020 • Xuancheng Huang, Jiacheng Zhang, Zhixing Tan, Derek F. Wong, Huanbo Luan, Jingfang Xu, Maosong Sun, Yang Liu
System combination is an important technique for combining the hypotheses of different machine translation systems to improve translation performance.
2 code implementations • IJCNLP 2019 • Xuancheng Huang, Yang Liu, Huanbo Luan, Jingfang Xu, Maosong Sun
To better identify translation errors, our method learns the representations of source sentences and system outputs in an interactive way.