1 code implementation • 22 Jul 2023 • Di wu, Pengfei Chen, Xuehui Yu, Guorong Li, Zhenjun Han, Jianbin Jiao
Object detection via inaccurate bounding boxes supervision has boosted a broad interest due to the expensive high-quality annotation data or the occasional inevitability of low annotation quality (\eg tiny objects).
no code implementations • 15 Sep 2022 • Xuehui Yu, Jingchi Jiang, Xinmiao Yu, Yi Guan, Xue Li
Complex systems are ubiquitous in the real world and tend to have complicated and poorly understood dynamics.
3 code implementations • 14 Jul 2022 • Pengfei Chen, Xuehui Yu, Xumeng Han, Najmul Hassan, Kai Wang, Jiachen Li, Jian Zhao, Humphrey Shi, Zhenjun Han, Qixiang Ye
However, the performance gap between point supervised object detection (PSOD) and bounding box supervised detection remains large.
2 code implementations • CVPR 2022 • Xuehui Yu, Pengfei Chen, Di wu, Najmul Hassan, Guorong Li, Junchi Yan, Humphrey Shi, Qixiang Ye, Zhenjun Han
In this study, we propose a POL method using coarse point annotations, relaxing the supervision signals from accurate key points to freely spotted points.
no code implementations • 31 Dec 2021 • Xuehui Yu, Di wu, Qixiang Ye, Jianbin Jiao, Zhenjun Han
As a result, we propose a point self-refinement approach that iteratively updates point annotations in a self-paced way.
2 code implementations • 7 Jul 2021 • Xumeng Han, Xuehui Yu, Guorong Li, Jian Zhao, Gang Pan, Qixiang Ye, Jianbin Jiao, Zhenjun Han
While extensive research has focused on the framework design and loss function, this paper shows that sampling strategy plays an equally important role.
no code implementations • 6 Feb 2021 • Nan Jiang, Xuehui Yu, Xiaoke Peng, Yuqi Gong, Zhenjun Han
Detecting tiny objects ( e. g., less than 20 x 20 pixels) in large-scale images is an important yet open problem.
1 code implementation • 21 Jan 2021 • Nan Jiang, Kuiran Wang, Xiaoke Peng, Xuehui Yu, Qiang Wang, Junliang Xing, Guorong Li, Jian Zhao, Guodong Guo, Zhenjun Han
The releasing of such a large-scale dataset could be a useful initial step in research of tracking UAVs.
no code implementations • 4 Nov 2020 • Yuqi Gong, Xuehui Yu, Yao Ding, Xiaoke Peng, Jian Zhao, Zhenjun Han
We propose a novel concept, fusion factor, to control information that deep layers deliver to shallow layers, for adapting FPN to tiny object detection.
1 code implementation • 16 Sep 2020 • Xuehui Yu, Zhenjun Han, Yuqi Gong, Nan Jiang, Jian Zhao, Qixiang Ye, Jie Chen, Yuan Feng, Bin Zhang, Xiaodi Wang, Ying Xin, Jingwei Liu, Mingyuan Mao, Sheng Xu, Baochang Zhang, Shumin Han, Cheng Gao, Wei Tang, Lizuo Jin, Mingbo Hong, Yuchao Yang, Shuiwang Li, Huan Luo, Qijun Zhao, Humphrey Shi
The 1st Tiny Object Detection (TOD) Challenge aims to encourage research in developing novel and accurate methods for tiny object detection in images which have wide views, with a current focus on tiny person detection.
2 code implementations • 23 Dec 2019 • Xuehui Yu, Yuqi Gong, Nan Jiang, Qixiang Ye, Zhenjun Han
In this paper, we introduce a new benchmark, referred to as TinyPerson, opening up a promising directionfor tiny object detection in a long distance and with mas-sive backgrounds.