no code implementations • 2 Mar 2025 • Yan Wang, Lingfei Qian, Xueqing Peng, Jimin Huang, Dongji Feng
The evaluation of ranking tasks remains a significant challenge in natural language processing (NLP), particularly due to the lack of direct labels for results in real-world scenarios.
no code implementations • 17 Feb 2025 • Guojun Xiong, Zhiyang Deng, Keyi Wang, Yupeng Cao, Haohang Li, Yangyang Yu, Xueqing Peng, Mingquan Lin, Kaleb E Smith, Xiao-Yang Liu, Jimin Huang, Sophia Ananiadou, Qianqian Xie
Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks.
1 code implementation • 12 Feb 2025 • Lingfei Qian, Weipeng Zhou, Yan Wang, Xueqing Peng, Han Yi, Jimin Huang, Qianqian Xie, Jianyun Nie
While large language models (LLMs) have shown strong general reasoning capabilities, their effectiveness in financial reasoning, which is crucial for real-world financial applications remains underexplored.
no code implementations • 24 Dec 2024 • Haohang Li, Yupeng Cao, Yangyang Yu, Shashidhar Reddy Javaji, Zhiyang Deng, Yueru He, Yuechen Jiang, Zining Zhu, Koduvayur Subbalakshmi, Guojun Xiong, Jimin Huang, Lingfei Qian, Xueqing Peng, Qianqian Xie, Jordan W. Suchow
Despite this progress, the field currently encounters two main challenges: (1) the lack of a comprehensive LLM agent framework adaptable to a variety of financial tasks, and (2) the absence of standardized benchmarks and consistent datasets for assessing agent performance.
1 code implementation • 15 Nov 2024 • Yan Hu, Xu Zuo, Yujia Zhou, Xueqing Peng, Jimin Huang, Vipina K. Keloth, Vincent J. Zhang, Ruey-Ling Weng, Qingyu Chen, Xiaoqian Jiang, Kirk E. Roberts, Hua Xu
On unseen i2b2 data, LLaMA-3-70B outperformed BERT by 7% (F1) on NER and 4% on RE.
no code implementations • 20 Aug 2024 • Jimin Huang, Mengxi Xiao, Dong Li, Zihao Jiang, Yuzhe Yang, Yifei Zhang, Lingfei Qian, Yan Wang, Xueqing Peng, Yang Ren, Ruoyu Xiang, Zhengyu Chen, Xiao Zhang, Yueru He, Weiguang Han, Shunian Chen, Lihang Shen, Daniel Kim, Yangyang Yu, Yupeng Cao, Zhiyang Deng, Haohang Li, Duanyu Feng, Yongfu Dai, VijayaSai Somasundaram, Peng Lu, Guojun Xiong, Zhiwei Liu, Zheheng Luo, Zhiyuan Yao, Ruey-Ling Weng, Meikang Qiu, Kaleb E Smith, Honghai Yu, Yanzhao Lai, Min Peng, Jian-Yun Nie, Jordan W. Suchow, Xiao-Yang Liu, Benyou Wang, Alejandro Lopez-Lira, Qianqian Xie, Sophia Ananiadou, Junichi Tsujii
Financial LLMs hold promise for advancing financial tasks and domain-specific applications.
no code implementations • 8 Apr 2024 • Yiming Li, Xueqing Peng, Jianfu Li, Xu Zuo, Suyuan Peng, Donghong Pei, Cui Tao, Hua Xu, Na Hong
This study underscores the effectiveness of LLMs like GPT in extracting relations related to acupoint locations, with implications for accurately modeling acupuncture knowledge and promoting standard implementation in acupuncture training and practice.
1 code implementation • 20 Feb 2024 • Qianqian Xie, Qingyu Chen, Aokun Chen, Cheng Peng, Yan Hu, Fongci Lin, Xueqing Peng, Jimin Huang, Jeffrey Zhang, Vipina Keloth, Xinyu Zhou, Lingfei Qian, Huan He, Dennis Shung, Lucila Ohno-Machado, Yonghui Wu, Hua Xu, Jiang Bian
This work underscores the importance of domain-specific data in developing medical LLMs and addresses the high computational costs involved in training, highlighting a balance between pre-training and fine-tuning strategies.
1 code implementation • 10 May 2023 • Qingyu Chen, Yan Hu, Xueqing Peng, Qianqian Xie, Qiao Jin, Aidan Gilson, Maxwell B. Singer, Xuguang Ai, Po-Ting Lai, Zhizheng Wang, Vipina Kuttichi Keloth, Kalpana Raja, Jiming Huang, Huan He, Fongci Lin, Jingcheng Du, Rui Zhang, W. Jim Zheng, Ron A. Adelman, Zhiyong Lu, Hua Xu
The biomedical literature is rapidly expanding, posing a significant challenge for manual curation and knowledge discovery.
1 code implementation • 29 Mar 2023 • Yan Hu, Qingyu Chen, Jingcheng Du, Xueqing Peng, Vipina Kuttichi Keloth, Xu Zuo, Yujia Zhou, Zehan Li, Xiaoqian Jiang, Zhiyong Lu, Kirk Roberts, Hua Xu
Results: Using baseline prompts, GPT-3. 5 and GPT-4 achieved relaxed F1 scores of 0. 634, 0. 804 for MTSamples, and 0. 301, 0. 593 for VAERS.