1 code implementation • 20 Mar 2022 • Yuezihan Jiang, Yu Cheng, Hanyu Zhao, Wentao Zhang, Xupeng Miao, Yu He, Liang Wang, Zhi Yang, Bin Cui
We introduce ZOOMER, a system deployed at Taobao, the largest e-commerce platform in China, for training and serving GNN-based recommendations over web-scale graphs.
1 code implementation • 29 Dec 2021 • Xiaonan Nie, Shijie Cao, Xupeng Miao, Lingxiao Ma, Jilong Xue, Youshan Miao, Zichao Yang, Zhi Yang, Bin Cui
However, we found that the current approach of jointly training experts and the sparse gate introduces a negative impact on model accuracy, diminishing the efficiency of expensive large-scale model training.
1 code implementation • 14 Dec 2021 • Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao, Bin Cui
Embedding models have been an effective learning paradigm for high-dimensional data.
2 code implementations • CVPR 2022 • Renrui Zhang, Ziyu Guo, Wei zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, Hongsheng Li
On top of that, we design an inter-view adapter to better extract the global feature and adaptively fuse the few-shot knowledge learned from 3D into CLIP pre-trained in 2D.
1 code implementation • 25 Jul 2021 • Wentao Zhang, Yuezihan Jiang, Yang Li, Zeang Sheng, Yu Shen, Xupeng Miao, Liang Wang, Zhi Yang, Bin Cui
Unfortunately, many real-world networks are sparse in terms of both edges and labels, leading to sub-optimal performance of GNNs.
no code implementations • The VLDB Journal 2021 • Yingxia Shao, Shiyue Huang, Yawen Li, Xupeng Miao, Bin Cui & Lei Chen
In this paper, to clearly compare the efficiency of various node sampling methods, we first design a cost model and propose two new node sampling methods: one follows the acceptance-rejection paradigm to achieve a better balance between memory and time cost, and the other is optimized for fast sampling the skewed probability distributions existed in natural graphs.
no code implementations • 10 Oct 2019 • Xupeng Miao, Nezihe Merve Gürel, Wentao Zhang, Zhichao Han, Bo Li, Wei Min, Xi Rao, Hansheng Ren, Yinan Shan, Yingxia Shao, Yujie Wang, Fan Wu, Hui Xue, Yaming Yang, Zitao Zhang, Yang Zhao, Shuai Zhang, Yujing Wang, Bin Cui, Ce Zhang
Despite the wide application of Graph Convolutional Network (GCN), one major limitation is that it does not benefit from the increasing depth and suffers from the oversmoothing problem.