no code implementations • 10 May 2024 • Nan Zhang, Yanchi Liu, Xujiang Zhao, Wei Cheng, Runxue Bao, Rui Zhang, Prasenjit Mitra, Haifeng Chen
Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity.
no code implementations • 18 Feb 2024 • Fali Wang, Runxue Bao, Suhang Wang, Wenchao Yu, Yanchi Liu, Wei Cheng, Haifeng Chen
Though Large Language Models (LLMs) have shown remarkable open-generation capabilities across diverse domains, they struggle with knowledge-intensive tasks.
1 code implementation • 15 Feb 2024 • Chen Ling, Xujiang Zhao, Xuchao Zhang, Wei Cheng, Yanchi Liu, Yiyou Sun, Mika Oishi, Takao Osaki, Katsushi Matsuda, Jie Ji, Guangji Bai, Liang Zhao, Haifeng Chen
Existing works have been devoted to quantifying the uncertainty in LLM's response, but they often overlook the complex nature of LLMs and the uniqueness of in-context learning.
no code implementations • 18 Oct 2023 • Chen Ling, Xuchao Zhang, Xujiang Zhao, Yanchi Liu, Wei Cheng, Mika Oishi, Takao Osaki, Katsushi Matsuda, Haifeng Chen, Liang Zhao
In this work, we leverage pre-trained language models to iteratively retrieve reasoning paths on the external knowledge base, which does not require task-specific supervision.
1 code implementation • 8 Oct 2023 • Yufei Li, Xiao Yu, Yanghong Guo, Yanchi Liu, Haifeng Chen, Cong Liu
Joint entity and relation extraction is a process that identifies entity pairs and their relations using a single model.
no code implementations • 3 Oct 2023 • Yijia Xiao, Yiqiao Jin, Yushi Bai, Yue Wu, Xianjun Yang, Xiao Luo, Wenchao Yu, Xujiang Zhao, Yanchi Liu, Haifeng Chen, Wei Wang, Wei Cheng
To address this challenge, we introduce Privacy Protection Language Models (PPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding data privacy.
no code implementations • 30 Sep 2023 • Tianxiang Zhao, Wenchao Yu, Suhang Wang, Lu Wang, Xiang Zhang, Yuncong Chen, Yanchi Liu, Wei Cheng, Haifeng Chen
After the model is learned, we can obtain causal relations among states and action variables behind its decisions, exposing policies learned by it.
1 code implementation • 12 Sep 2023 • Yufei Li, Yanchi Liu, Haoyu Wang, Zhengzhang Chen, Wei Cheng, Yuncong Chen, Wenchao Yu, Haifeng Chen, Cong Liu
Subsequently, GLAD utilizes a temporal-attentive graph edge anomaly detection model for identifying anomalous relations in these dynamic log graphs.
no code implementations • 7 Sep 2023 • Chen Ling, Xujiang Zhao, Xuchao Zhang, Yanchi Liu, Wei Cheng, Haoyu Wang, Zhengzhang Chen, Takao Osaki, Katsushi Matsuda, Haifeng Chen, Liang Zhao
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text, typically in the form of (subject, relation, object) triples.
Ranked #6 on Open Information Extraction on OIE2016
1 code implementation • 13 Jun 2023 • Tianxiang Zhao, Wenchao Yu, Suhang Wang, Lu Wang, Xiang Zhang, Yuncong Chen, Yanchi Liu, Wei Cheng, Haifeng Chen
Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations.
no code implementations • 30 May 2023 • Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy Chowdhury, Yun Li, Hejie Cui, Xuchao Zhang, Tianjiao Zhao, Amit Panalkar, Dhagash Mehta, Stefano Pasquali, Wei Cheng, Haoyu Wang, Yanchi Liu, Zhengzhang Chen, Haifeng Chen, Chris White, Quanquan Gu, Jian Pei, Carl Yang, Liang Zhao
In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications.
no code implementations • 18 May 2023 • Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, Haifeng Chen
In this paper, we propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model.
1 code implementation • 7 May 2023 • Xinyu Du, Huanhuan Yuan, Pengpeng Zhao, Junhua Fang, Guanfeng Liu, Yanchi Liu, Victor S. Sheng, Xiaofang Zhou
Sequential recommendation (SR) aims to model user preferences by capturing behavior patterns from their item historical interaction data.
1 code implementation • 5 May 2023 • Yufei Li, Xiao Yu, Yanchi Liu, Haifeng Chen, Cong Liu
To mitigate such impact, we propose uncertainty-aware bootstrap learning, which is motivated by the intuition that the higher uncertainty of an instance, the more likely the model confidence is inconsistent with the ground truths.
1 code implementation • 1 May 2023 • Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei Zhou, Haifeng Chen, Wei Cheng
The recent trend towards Personalized Federated Learning (PFL) has garnered significant attention as it allows for the training of models that are tailored to each client while maintaining data privacy.
1 code implementation • 21 Mar 2023 • Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, Xiang Zhang
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples, such that an encoder can be trained to learn robust and discriminative representations.
1 code implementation • ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2022 • Shengming Zhang, Yanchi Liu, Xuchao Zhang, Wei Cheng, Haifeng Chen, Hui Xiong
It is critical and important to detect anomalies in event sequences, which becomes widely available in many application domains. In-deed, various efforts have been made to capture abnormal patterns from event sequences through sequential pattern analysis or event representation learning. However, existing approaches usually ignore the semantic information of event content. To this end, in this paper, we propose a self-attentive encoder-decoder transformer framework, Content-Aware Transformer(CAT), for anomaly detection in event sequences. In CAT, the encoder learns preamble event sequence representations with content awareness, and the decoder embeds sequences under detection into a latent space, where anomalies are distinguishable. Specifically, the event content is first fed to a content-awareness layer, generating representations of each event. The encoder accepts preamble event representation sequence, generating feature maps. In the decoder, an additional token is added at the beginning of the sequence under detection, denoting the sequence status. A one-class objective together with sequence reconstruction loss is collectively applied to train our framework under the label efficiency scheme. Furthermore, CAT is optimized under a scalable and efficient setting. Finally, extensive experiments on three real-world datasets demonstrate the superiority of CAT.
1 code implementation • 8 Aug 2022 • Hanwen Du, Hui Shi, Pengpeng Zhao, Deqing Wang, Victor S. Sheng, Yanchi Liu, Guanfeng Liu, Lei Zhao
Contrastive learning with Transformer-based sequence encoder has gained predominance for sequential recommendation.
no code implementations • 21 Apr 2022 • Yongjing Hao, Pengpeng Zhao, Xuefeng Xian, Guanfeng Liu, Deqing Wang, Lei Zhao, Yanchi Liu, Victor S. Sheng
To this end, in this paper, we propose a Learnable Model Augmentation self-supervised learning for sequential Recommendation (LMA4Rec).
no code implementations • 31 Dec 2021 • Dongbo Xi, Fuzhen Zhuang, Yanchi Liu, Jingjing Gu, Hui Xiong, Qing He
Then, target temporal pattern in combination with user and POI information are fed into a multi-layer network to capture users' dynamic preferences.
no code implementations • 31 Dec 2021 • Dongbo Xi, Fuzhen Zhuang, Yanchi Liu, HengShu Zhu, Pengpeng Zhao, Chang Tan, Qing He
To this end, in this paper, we propose a novel neural network approach to identify the missing POI categories by integrating both bi-directional global non-personal transition patterns and personal preferences of users.
no code implementations • 23 Dec 2021 • Junxiang Wang, Xuchao Zhang, Bo Zong, Yanchi Liu, Wei Cheng, Jingchao Ni, Haifeng Chen, Liang Zhao
During the past several years, a surge of multi-lingual Pre-trained Language Models (PLMs) has been proposed to achieve state-of-the-art performance in many cross-lingual downstream tasks.
no code implementations • 1 Dec 2021 • Denghui Zhang, Zixuan Yuan, Yanchi Liu, Hao liu, Fuzhen Zhuang, Hui Xiong, Haifeng Chen
Also, the word co-occurrences guided semantic learning of pre-training models can be largely augmented by entity-level association knowledge.
1 code implementation • 1 Dec 2021 • Liyan Xu, Xuchao Zhang, Bo Zong, Yanchi Liu, Wei Cheng, Jingchao Ni, Haifeng Chen, Liang Zhao, Jinho D. Choi
We target the task of cross-lingual Machine Reading Comprehension (MRC) in the direct zero-shot setting, by incorporating syntactic features from Universal Dependencies (UD), and the key features we use are the syntactic relations within each sentence.
no code implementations • 20 Nov 2021 • Yaxing Fang, Pengpeng Zhao, Guanfeng Liu, Yanchi Liu, Victor S. Sheng, Lei Zhao, Xiaofang Zhou
Graph Convolution Network (GCN) has been widely applied in recommender systems for its representation learning capability on user and item embeddings.
no code implementations • 20 Nov 2021 • Yunyi Li, Pengpeng Zhao, Guanfeng Liu, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Xiaofang Zhou
In this paper, we propose an Edge-Enhanced Global Disentangled Graph Neural Network (EGD-GNN) model to capture the relation information between items for global item representation and local user intention learning.
no code implementations • 29 Sep 2021 • Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao Zhang, Yanchi Liu, Haifeng Chen, Xiang Zhang
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
no code implementations • NAACL 2021 • Xuchao Zhang, Bo Zong, Wei Cheng, Jingchao Ni, Yanchi Liu, Haifeng Chen
Measuring document similarity plays an important role in natural language processing tasks.
1 code implementation • 26 Mar 2021 • Dongsheng Luo, Wei Cheng, Jingchao Ni, Wenchao Yu, Xuchao Zhang, Bo Zong, Yanchi Liu, Zhengzhang Chen, Dongjin Song, Haifeng Chen, Xiang Zhang
We present a contrasting learning approach with data augmentation techniques to learn document representations in an unsupervised manner.
1 code implementation • 3 Mar 2021 • Yinjun Wu, Jingchao Ni, Wei Cheng, Bo Zong, Dongjin Song, Zhengzhang Chen, Yanchi Liu, Xuchao Zhang, Haifeng Chen, Susan Davidson
Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications.
no code implementations • 26 Oct 2020 • Denghui Zhang, Yanchi Liu, Wei Cheng, Bo Zong, Jingchao Ni, Zhengzhang Chen, Haifeng Chen, Hui Xiong
Accurate air turbulence forecasting can help airlines avoid hazardous turbulence, guide the routes that keep passengers safe, maximize efficiency, and reduce costs.
no code implementations • 16 Sep 2020 • Denghui Zhang, Junming Liu, HengShu Zhu, Yanchi Liu, Lichen Wang, Pengyang Wang, Hui Xiong
However, it is still a challenging task since (1) the job title and job transition (job-hopping) data is messy which contains a lot of subjective and non-standard naming conventions for the same position (e. g., Programmer, Software Development Engineer, SDE, Implementation Engineer), (2) there is a large amount of missing title/transition information, and (3) one talent only seeks limited numbers of jobs which brings the incompleteness and randomness modeling job transition patterns.
no code implementations • 7 Sep 2020 • Denghui Zhang, Zixuan Yuan, Yanchi Liu, Fuzhen Zhuang, Haifeng Chen, Hui Xiong
Pre-trained language models such as BERT have achieved great success in a broad range of natural language processing tasks.
no code implementations • ICLR 2020 • Lichen Wang, Bo Zong, Qianqian Ma, Wei Cheng, Jingchao Ni, Wenchao Yu, Yanchi Liu, Dongjin Song, Haifeng Chen, Yun Fu
Inductive and unsupervised graph learning is a critical technique for predictive or information retrieval tasks where label information is difficult to obtain.
1 code implementation • 13 Apr 2020 • Jingjing Gu, Qiang Zhou, Jingyuan Yang, Yanchi Liu, Fuzhen Zhuang, Yanchao Zhao, Hui Xiong
Unlike the traditional dock-based systems, dockless bike-sharing systems are more convenient for users in terms of flexibility.
no code implementations • 18 Dec 2019 • Xin Dong, Jingchao Ni, Wei Cheng, Zhengzhang Chen, Bo Zong, Dongjin Song, Yanchi Liu, Haifeng Chen, Gerard de Melo
In practice, however, these two sets of reviews are notably different: users' reviews reflect a variety of items that they have bought and are hence very heterogeneous in their topics, while an item's reviews pertain only to that single item and are thus topically homogeneous.
1 code implementation • 24 Nov 2019 • Weijia Zhang, Hao liu, Yanchi Liu, Jingbo Zhou, Hui Xiong
However, it is a non-trivial task for predicting citywide parking availability because of three major challenges: 1) the non-Euclidean spatial autocorrelation among parking lots, 2) the dynamic temporal autocorrelation inside of and between parking lots, and 3) the scarcity of information about real-time parking availability obtained from real-time sensors (e. g., camera, ultrasonic sensor, and GPS).
no code implementations • 29 May 2019 • Jian Liu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Fuzheng Zhuang, Jiajie Xu, Xiaofang Zhou, Hui Xiong
Then, we integrate the aesthetic features into a cross-domain network to transfer users' domain independent aesthetic preferences.
no code implementations • 18 Jun 2018 • Pengpeng Zhao, Haifeng Zhu, Yanchi Liu, Zhixu Li, Jiajie Xu, Victor S. Sheng
Furthermore, to reduce the number of parameters and improve efficiency, we further integrate coupled input and forget gates with our proposed model.