Search Results for author: Yanchi Liu

Found 39 papers, 15 papers with code

Pruning as a Domain-specific LLM Extractor

no code implementations10 May 2024 Nan Zhang, Yanchi Liu, Xujiang Zhao, Wei Cheng, Runxue Bao, Rui Zhang, Prasenjit Mitra, Haifeng Chen

Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity.

Specificity

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration

no code implementations18 Feb 2024 Fali Wang, Runxue Bao, Suhang Wang, Wenchao Yu, Yanchi Liu, Wei Cheng, Haifeng Chen

Though Large Language Models (LLMs) have shown remarkable open-generation capabilities across diverse domains, they struggle with knowledge-intensive tasks.

Knowledge Graphs

Uncertainty Quantification for In-Context Learning of Large Language Models

1 code implementation15 Feb 2024 Chen Ling, Xujiang Zhao, Xuchao Zhang, Wei Cheng, Yanchi Liu, Yiyou Sun, Mika Oishi, Takao Osaki, Katsushi Matsuda, Jie Ji, Guangji Bai, Liang Zhao, Haifeng Chen

Existing works have been devoted to quantifying the uncertainty in LLM's response, but they often overlook the complex nature of LLMs and the uniqueness of in-context learning.

Hallucination In-Context Learning +1

Open-ended Commonsense Reasoning with Unrestricted Answer Scope

no code implementations18 Oct 2023 Chen Ling, Xuchao Zhang, Xujiang Zhao, Yanchi Liu, Wei Cheng, Mika Oishi, Takao Osaki, Katsushi Matsuda, Haifeng Chen, Liang Zhao

In this work, we leverage pre-trained language models to iteratively retrieve reasoning paths on the external knowledge base, which does not require task-specific supervision.

Question Answering Retrieval

Distantly-Supervised Joint Extraction with Noise-Robust Learning

1 code implementation8 Oct 2023 Yufei Li, Xiao Yu, Yanghong Guo, Yanchi Liu, Haifeng Chen, Cong Liu

Joint entity and relation extraction is a process that identifies entity pairs and their relations using a single model.

Joint Entity and Relation Extraction Language Modelling +2

Large Language Models Can Be Good Privacy Protection Learners

no code implementations3 Oct 2023 Yijia Xiao, Yiqiao Jin, Yushi Bai, Yue Wu, Xianjun Yang, Xiao Luo, Wenchao Yu, Xujiang Zhao, Yanchi Liu, Haifeng Chen, Wei Wang, Wei Cheng

To address this challenge, we introduce Privacy Protection Language Models (PPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding data privacy.

Interpretable Imitation Learning with Dynamic Causal Relations

no code implementations30 Sep 2023 Tianxiang Zhao, Wenchao Yu, Suhang Wang, Lu Wang, Xiang Zhang, Yuncong Chen, Yanchi Liu, Wei Cheng, Haifeng Chen

After the model is learned, we can obtain causal relations among states and action variables behind its decisions, exposing policies learned by it.

Causal Discovery Imitation Learning

GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection

1 code implementation12 Sep 2023 Yufei Li, Yanchi Liu, Haoyu Wang, Zhengzhang Chen, Wei Cheng, Yuncong Chen, Wenchao Yu, Haifeng Chen, Cong Liu

Subsequently, GLAD utilizes a temporal-attentive graph edge anomaly detection model for identifying anomalous relations in these dynamic log graphs.

Anomaly Detection Few-Shot Learning +1

Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations

1 code implementation13 Jun 2023 Tianxiang Zhao, Wenchao Yu, Suhang Wang, Lu Wang, Xiang Zhang, Yuncong Chen, Yanchi Liu, Wei Cheng, Haifeng Chen

Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations.

Disentanglement Imitation Learning

Disentangled Causal Graph Learning for Online Unsupervised Root Cause Analysis

no code implementations18 May 2023 Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, Haifeng Chen

In this paper, we propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model.

Graph Learning

Contrastive Enhanced Slide Filter Mixer for Sequential Recommendation

1 code implementation7 May 2023 Xinyu Du, Huanhuan Yuan, Pengpeng Zhao, Junhua Fang, Guanfeng Liu, Yanchi Liu, Victor S. Sheng, Xiaofang Zhou

Sequential recommendation (SR) aims to model user preferences by capturing behavior patterns from their item historical interaction data.

Contrastive Learning Sequential Recommendation

Uncertainty-Aware Bootstrap Learning for Joint Extraction on Distantly-Supervised Data

1 code implementation5 May 2023 Yufei Li, Xiao Yu, Yanchi Liu, Haifeng Chen, Cong Liu

To mitigate such impact, we propose uncertainty-aware bootstrap learning, which is motivated by the intuition that the higher uncertainty of an instance, the more likely the model confidence is inconsistent with the ground truths.

Relation Extraction

Personalized Federated Learning under Mixture of Distributions

1 code implementation1 May 2023 Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei Zhou, Haifeng Chen, Wei Cheng

The recent trend towards Personalized Federated Learning (PFL) has garnered significant attention as it allows for the training of models that are tailored to each client while maintaining data privacy.

Personalized Federated Learning Uncertainty Quantification

Time Series Contrastive Learning with Information-Aware Augmentations

1 code implementation21 Mar 2023 Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, Xiang Zhang

A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples, such that an encoder can be trained to learn robust and discriminative representations.

Contrastive Learning Open-Ended Question Answering +2

CAT: Beyond Efficient Transformer for Content-Aware Anomaly Detection in Event Sequences

1 code implementation ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2022 Shengming Zhang, Yanchi Liu, Xuchao Zhang, Wei Cheng, Haifeng Chen, Hui Xiong

It is critical and important to detect anomalies in event sequences, which becomes widely available in many application domains. In-deed, various efforts have been made to capture abnormal patterns from event sequences through sequential pattern analysis or event representation learning. However, existing approaches usually ignore the semantic information of event content. To this end, in this paper, we propose a self-attentive encoder-decoder transformer framework, Content-Aware Transformer(CAT), for anomaly detection in event sequences. In CAT, the encoder learns preamble event sequence representations with content awareness, and the decoder embeds sequences under detection into a latent space, where anomalies are distinguishable. Specifically, the event content is first fed to a content-awareness layer, generating representations of each event. The encoder accepts preamble event representation sequence, generating feature maps. In the decoder, an additional token is added at the beginning of the sequence under detection, denoting the sequence status. A one-class objective together with sequence reconstruction loss is collectively applied to train our framework under the label efficiency scheme. Furthermore, CAT is optimized under a scalable and efficient setting. Finally, extensive experiments on three real-world datasets demonstrate the superiority of CAT.

Anomaly Detection Decoder

Modelling of Bi-directional Spatio-Temporal Dependence and Users' Dynamic Preferences for Missing POI Check-in Identification

no code implementations31 Dec 2021 Dongbo Xi, Fuzhen Zhuang, Yanchi Liu, Jingjing Gu, Hui Xiong, Qing He

Then, target temporal pattern in combination with user and POI information are fed into a multi-layer network to capture users' dynamic preferences.

Exploiting Bi-directional Global Transition Patterns and Personal Preferences for Missing POI Category Identification

no code implementations31 Dec 2021 Dongbo Xi, Fuzhen Zhuang, Yanchi Liu, HengShu Zhu, Pengpeng Zhao, Chang Tan, Qing He

To this end, in this paper, we propose a novel neural network approach to identify the missing POI categories by integrating both bi-directional global non-personal transition patterns and personal preferences of users.

Recommendation Systems

Do Multi-Lingual Pre-trained Language Models Reveal Consistent Token Attributions in Different Languages?

no code implementations23 Dec 2021 Junxiang Wang, Xuchao Zhang, Bo Zong, Yanchi Liu, Wei Cheng, Jingchao Ni, Haifeng Chen, Liang Zhao

During the past several years, a surge of multi-lingual Pre-trained Language Models (PLMs) has been proposed to achieve state-of-the-art performance in many cross-lingual downstream tasks.

Domain-oriented Language Pre-training with Adaptive Hybrid Masking and Optimal Transport Alignment

no code implementations1 Dec 2021 Denghui Zhang, Zixuan Yuan, Yanchi Liu, Hao liu, Fuzhen Zhuang, Hui Xiong, Haifeng Chen

Also, the word co-occurrences guided semantic learning of pre-training models can be largely augmented by entity-level association knowledge.

Entity Alignment

Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-sentence Dependency Graph

1 code implementation1 Dec 2021 Liyan Xu, Xuchao Zhang, Bo Zong, Yanchi Liu, Wei Cheng, Jingchao Ni, Haifeng Chen, Liang Zhao, Jinho D. Choi

We target the task of cross-lingual Machine Reading Comprehension (MRC) in the direct zero-shot setting, by incorporating syntactic features from Universal Dependencies (UD), and the key features we use are the syntactic relations within each sentence.

Machine Reading Comprehension Sentence

Quaternion-Based Graph Convolution Network for Recommendation

no code implementations20 Nov 2021 Yaxing Fang, Pengpeng Zhao, Guanfeng Liu, Yanchi Liu, Victor S. Sheng, Lei Zhao, Xiaofang Zhou

Graph Convolution Network (GCN) has been widely applied in recommender systems for its representation learning capability on user and item embeddings.

Recommendation Systems Representation Learning

Edge-Enhanced Global Disentangled Graph Neural Network for Sequential Recommendation

no code implementations20 Nov 2021 Yunyi Li, Pengpeng Zhao, Guanfeng Liu, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Xiaofang Zhou

In this paper, we propose an Edge-Enhanced Global Disentangled Graph Neural Network (EGD-GNN) model to capture the relation information between items for global item representation and local user intention learning.

Graph Neural Network Sequential Recommendation

Information-Aware Time Series Meta-Contrastive Learning

no code implementations29 Sep 2021 Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao Zhang, Yanchi Liu, Haifeng Chen, Xiang Zhang

How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.

Contrastive Learning Meta-Learning +4

Unsupervised Document Embedding via Contrastive Augmentation

1 code implementation26 Mar 2021 Dongsheng Luo, Wei Cheng, Jingchao Ni, Wenchao Yu, Xuchao Zhang, Bo Zong, Yanchi Liu, Zhengzhang Chen, Dongjin Song, Haifeng Chen, Xiang Zhang

We present a contrasting learning approach with data augmentation techniques to learn document representations in an unsupervised manner.

Contrastive Learning Data Augmentation +4

Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series

1 code implementation3 Mar 2021 Yinjun Wu, Jingchao Ni, Wei Cheng, Bo Zong, Dongjin Song, Zhengzhang Chen, Yanchi Liu, Xuchao Zhang, Haifeng Chen, Susan Davidson

Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications.

Clustering Time Series +1

T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting

no code implementations26 Oct 2020 Denghui Zhang, Yanchi Liu, Wei Cheng, Bo Zong, Jingchao Ni, Zhengzhang Chen, Haifeng Chen, Hui Xiong

Accurate air turbulence forecasting can help airlines avoid hazardous turbulence, guide the routes that keep passengers safe, maximize efficiency, and reduce costs.

Decoder

Job2Vec: Job Title Benchmarking with Collective Multi-View Representation Learning

no code implementations16 Sep 2020 Denghui Zhang, Junming Liu, HengShu Zhu, Yanchi Liu, Lichen Wang, Pengyang Wang, Hui Xiong

However, it is still a challenging task since (1) the job title and job transition (job-hopping) data is messy which contains a lot of subjective and non-standard naming conventions for the same position (e. g., Programmer, Software Development Engineer, SDE, Implementation Engineer), (2) there is a large amount of missing title/transition information, and (3) one talent only seeks limited numbers of jobs which brings the incompleteness and randomness modeling job transition patterns.

Benchmarking Link Prediction +2

E-BERT: A Phrase and Product Knowledge Enhanced Language Model for E-commerce

no code implementations7 Sep 2020 Denghui Zhang, Zixuan Yuan, Yanchi Liu, Fuzhen Zhuang, Haifeng Chen, Hui Xiong

Pre-trained language models such as BERT have achieved great success in a broad range of natural language processing tasks.

Aspect Extraction Denoising +4

Inductive and Unsupervised Representation Learning on Graph Structured Objects

no code implementations ICLR 2020 Lichen Wang, Bo Zong, Qianqian Ma, Wei Cheng, Jingchao Ni, Wenchao Yu, Yanchi Liu, Dongjin Song, Haifeng Chen, Yun Fu

Inductive and unsupervised graph learning is a critical technique for predictive or information retrieval tasks where label information is difficult to obtain.

Graph Learning Graph Similarity +3

Exploiting Interpretable Patterns for Flow Prediction in Dockless Bike Sharing Systems

1 code implementation13 Apr 2020 Jingjing Gu, Qiang Zhou, Jingyuan Yang, Yanchi Liu, Fuzhen Zhuang, Yanchao Zhao, Hui Xiong

Unlike the traditional dock-based systems, dockless bike-sharing systems are more convenient for users in terms of flexibility.

Clustering Management

Asymmetrical Hierarchical Networks with Attentive Interactions for Interpretable Review-Based Recommendation

no code implementations18 Dec 2019 Xin Dong, Jingchao Ni, Wei Cheng, Zhengzhang Chen, Bo Zong, Dongjin Song, Yanchi Liu, Haifeng Chen, Gerard de Melo

In practice, however, these two sets of reviews are notably different: users' reviews reflect a variety of items that they have bought and are hence very heterogeneous in their topics, while an item's reviews pertain only to that single item and are thus topically homogeneous.

Recommendation Systems

Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction

1 code implementation24 Nov 2019 Weijia Zhang, Hao liu, Yanchi Liu, Jingbo Zhou, Hui Xiong

However, it is a non-trivial task for predicting citywide parking availability because of three major challenges: 1) the non-Euclidean spatial autocorrelation among parking lots, 2) the dynamic temporal autocorrelation inside of and between parking lots, and 3) the scarcity of information about real-time parking availability obtained from real-time sensors (e. g., camera, ultrasonic sensor, and GPS).

Clustering Graph Neural Network

Deep Cross Networks with Aesthetic Preference for Cross-domain Recommendation

no code implementations29 May 2019 Jian Liu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Fuzheng Zhuang, Jiajie Xu, Xiaofang Zhou, Hui Xiong

Then, we integrate the aesthetic features into a cross-domain network to transfer users' domain independent aesthetic preferences.

Transfer Learning

Where to Go Next: A Spatio-temporal LSTM model for Next POI Recommendation

no code implementations18 Jun 2018 Pengpeng Zhao, Haifeng Zhu, Yanchi Liu, Zhixu Li, Jiajie Xu, Victor S. Sheng

Furthermore, to reduce the number of parameters and improve efficiency, we further integrate coupled input and forget gates with our proposed model.

Sequential Recommendation

Cannot find the paper you are looking for? You can Submit a new open access paper.