no code implementations • ECCV 2020 • Yanda Meng, Wei Meng, Dongxu Gao, Yitian Zhao, Xiaoyun Yang, Xiaowei Huang, Yalin Zheng
In particular, thanks to the proposed aggregation GCN, our network benefits from direct feature learning of the instances’ boundary locations and the spatial information propagation across the image.
no code implementations • 17 Feb 2025 • Chengzhi Liu, Zile Huang, Zhe Chen, Feilong Tang, Yu Tian, Zhongxing Xu, Zihong Luo, Yalin Zheng, Yanda Meng
To address these, we propose an Incomplete Modality Disentangled Representation (IMDR) strategy, which disentangles features into explicit independent modal-common and modal-specific features by guidance of mutual information, distilling informative knowledge and enabling it to reconstruct valuable missing semantics and produce robust multimodal representations.
no code implementations • 7 Jan 2025 • Xiaotong Guo, Deqian Yang, Dan Wang, Haochen Zhao, Yuan Li, Zhilin Sui, Tao Zhou, Lijun Zhang, Yanda Meng
Exploiting the generalization ability of these pre-trained foundation models on downstream tasks, such as segmentation, leads to unexpected performance with a relatively small amount of labeled data.
no code implementations • 23 Aug 2024 • Baoru Huang, Tuan Vo, Chayun Kongtongvattana, Giulio Dagnino, Dennis Kundrat, Wenqiang Chi, Mohamed Abdelaziz, Trevor Kwok, Tudor Jianu, Tuong Do, Hieu Le, Minh Nguyen, Hoan Nguyen, Erman Tjiputra, Quang Tran, Jianyang Xie, Yanda Meng, Binod Bhattarai, Zhaorui Tan, Hongbin Liu, Hong Seng Gan, Wei Wang, Xi Yang, Qiufeng Wang, Jionglong Su, Kaizhu Huang, Angelos Stefanidis, Min Guo, Bo Du, Rong Tao, Minh Vu, Guoyan Zheng, Yalin Zheng, Francisco Vasconcelos, Danail Stoyanov, Daniel Elson, Ferdinando Rodriguez y Baena, Anh Nguyen
Real-time visual feedback from catheterization analysis is crucial for enhancing surgical safety and efficiency during endovascular interventions.
2 code implementations • 15 Jul 2024 • Qingcheng Zeng, Mingyu Jin, Qinkai Yu, Zhenting Wang, Wenyue Hua, ZiHao Zhou, Guangyan Sun, Yanda Meng, Shiqing Ma, Qifan Wang, Felix Juefei-Xu, Kaize Ding, Fan Yang, Ruixiang Tang, Yongfeng Zhang
We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output.
1 code implementation • 4 Jul 2024 • Qinkai Yu, Jianyang Xie, Anh Nguyen, He Zhao, Jiong Zhang, Huazhu Fu, Yitian Zhao, Yalin Zheng, Yanda Meng
Diabetic retinopathy (DR) is a complication of diabetes and usually takes decades to reach sight-threatening levels.
1 code implementation • 13 Jun 2024 • Meng Wang, Tian Lin, Aidi Lin, Kai Yu, Yuanyuan Peng, Lianyu Wang, Cheng Chen, Ke Zou, Huiyu Liang, Man Chen, Xue Yao, Meiqin Zhang, Binwei Huang, Chaoxin Zheng, Peixin Zhang, Wei Chen, Yilong Luo, Yifan Chen, Honghe Xia, Tingkun Shi, Qi Zhang, Jinming Guo, Xiaolin Chen, Jingcheng Wang, Yih Chung Tham, Dianbo Liu, Wendy Wong, Sahil Thakur, Beau Fenner, Danqi Fang, Siying Liu, Qingyun Liu, Yuqiang Huang, Hongqiang Zeng, Yanda Meng, Yukun Zhou, Zehua Jiang, Minghui Qiu, Changqing Zhang, Xinjian Chen, Sophia Y Wang, Cecilia S Lee, Lucia Sobrin, Carol Y Cheung, Chi Pui Pang, Pearse A Keane, Ching-Yu Cheng, Haoyu Chen, Huazhu Fu
Here we introduce RetiZero, a vision-language foundation model that leverages knowledge from over 400 fundus diseases.
1 code implementation • 10 Apr 2024 • Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, Yongfeng Zhang
In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of ``Concept Depth'' to suggest that more complex concepts are typically acquired in deeper layers.
no code implementations • 1 Feb 2024 • Qinkai Yu, Mingyu Jin, Dong Shu, Chong Zhang, Lizhou Fan, Wenyue Hua, Suiyuan Zhu, Yanda Meng, Zhenting Wang, Mengnan Du, Yongfeng Zhang
Recent advancements in artificial intelligence (AI), especially large language models (LLMs), have significantly advanced healthcare applications and demonstrated potentials in intelligent medical treatment.
2 code implementations • 10 Jan 2024 • Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, Mengnan Du
Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models.
no code implementations • 27 Apr 2023 • Yuchen Zhang, Yanda Meng, Yalin Zheng
Accurate segmentation of the left atrial (LA) and LA scars can provide valuable information to predict treatment outcomes in AF.
1 code implementation • CVPR 2023 • Hongrun Zhang, Liam Burrows, Yanda Meng, Declan Sculthorpe, Abhik Mukherjee, Sarah E Coupland, Ke Chen, Yalin Zheng
Image segmentation is a fundamental task in the field of imaging and vision.
2 code implementations • CVPR 2022 • Hongrun Zhang, Yanda Meng, Yitian Zhao, Yihong Qiao, Xiaoyun Yang, Sarah E. Coupland, Yalin Zheng
Multiple instance learning (MIL) has been increasingly used in the classification of histopathology whole slide images (WSIs).
Ranked #1 on
Multiple Instance Learning
on TCGA
no code implementations • 9 Mar 2022 • Yanda Meng, Xu Chen, Dongxu Gao, Yitian Zhao, Xiaoyun Yang, Yihong Qiao, Xiaowei Huang, Yalin Zheng
In this paper, we propose a novel multi-level aggregation network to regress the coordinates of the vertices of a 3D face from a single 2D image in an end-to-end manner.
1 code implementation • 8 Mar 2022 • Yanda Meng, Joshua Bridge, Meng Wei, Yitian Zhao, Yihong Qiao, Xiaoyun Yang, Xiaowei Huang, Yalin Zheng
This paper proposes an adaptive auxiliary task learning based approach for object counting problems.
1 code implementation • 27 Oct 2021 • Yanda Meng, Hongrun Zhang, Dongxu Gao, Yitian Zhao, Xiaoyun Yang, Xuesheng Qian, Xiaowei Huang, Yalin Zheng
Our model is well-suited to obtain global semantic region information while also accommodates local spatial boundary characteristics simultaneously.
1 code implementation • ICCV 2021 • Yanda Meng, Hongrun Zhang, Yitian Zhao, Xiaoyun Yang, Xuesheng Qian, Xiaowei Huang, Yalin Zheng
Semi-supervised approaches for crowd counting attract attention, as the fully supervised paradigm is expensive and laborious due to its request for a large number of images of dense crowd scenarios and their annotations.