3 code implementations • 5 Jul 2024 • Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, Carlos Guestrin
We evaluate our instantiations at the scale of 125M to 1. 3B parameters, comparing with a strong Transformer and Mamba, a modern RNN.
2 code implementations • 6 Apr 2024 • Yann Dubois, Balázs Galambosi, Percy Liang, Tatsunori B. Hashimoto
Even simple, known confounders such as preference for longer outputs remain in existing automated evaluation metrics.
1 code implementation • 25 Sep 2023 • Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois, Chris J. Maddison, Tatsunori Hashimoto
Alongside the emulator, we develop an LM-based automatic safety evaluator that examines agent failures and quantifies associated risks.
2 code implementations • NeurIPS 2023 • Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy Liang, Tatsunori B. Hashimoto
As a demonstration of the research possible in AlpacaFarm, we find that methods that use a reward model can substantially improve over supervised fine-tuning and that our reference PPO implementation leads to a +10% improvement in win-rate against Davinci003.
1 code implementation • 6 Feb 2023 • Yann Dubois, Tatsunori Hashimoto, Percy Liang
Our decomposition consists of four error components: approximation, representation usability, probe generalization, and encoder generalization.
1 code implementation • 13 Sep 2022 • Yann Dubois, Tatsunori Hashimoto, Stefano Ermon, Percy Liang
For non-contrastive learning, we use our framework to derive a simple and novel objective.
no code implementations • 15 Jul 2022 • Shibani Santurkar, Yann Dubois, Rohan Taori, Percy Liang, Tatsunori Hashimoto
The development of CLIP [Radford et al., 2021] has sparked a debate on whether language supervision can result in vision models with more transferable representations than traditional image-only methods.
1 code implementation • 31 May 2022 • Ning Miao, Tom Rainforth, Emile Mathieu, Yann Dubois, Yee Whye Teh, Adam Foster, Hyunjik Kim
We introduce InstaAug, a method for automatically learning input-specific augmentations from data.
2 code implementations • ICLR 2022 • Yangjun Ruan, Yann Dubois, Chris J. Maddison
Machine learning systems often experience a distribution shift between training and testing.
Ranked #38 on Image Classification on ObjectNet (using extra training data)
1 code implementation • NeurIPS 2021 • Yann Dubois, Benjamin Bloem-Reddy, Karen Ullrich, Chris J. Maddison
Most data is automatically collected and only ever "seen" by algorithms.
Ranked #1 on Image Compression on Oxford-IIIT Pet Dataset (using extra training data)
1 code implementation • NeurIPS 2020 • Yann Dubois, Douwe Kiela, David J. Schwab, Ramakrishna Vedantam
We address the question of characterizing and finding optimal representations for supervised learning.
2 code implementations • NeurIPS 2020 • Andrew Y. K. Foong, Wessel P. Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, Richard E. Turner
Stationary stochastic processes (SPs) are a key component of many probabilistic models, such as those for off-the-grid spatio-temporal data.
no code implementations • ACL 2020 • Yann Dubois, Gautier Dagan, Dieuwke Hupkes, Elia Bruni
We hypothesize that models with a separate content- and location-based attention are more likely to extrapolate than those with common attention mechanisms.
3 code implementations • ICLR 2020 • Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, Richard E. Turner
We introduce the Convolutional Conditional Neural Process (ConvCNP), a new member of the Neural Process family that models translation equivariance in the data.