Search Results for author: Yannik Stradmann

Found 12 papers, 2 papers with code

Lu.i -- A low-cost electronic neuron for education and outreach

1 code implementation25 Apr 2024 Yannik Stradmann, Julian Göltz, Mihai A. Petrovici, Johannes Schemmel, Sebastian Billaudelle

With an increasing presence of science throughout all parts of society, there is a rising expectation for researchers to effectively communicate their work and, equally, for teachers to discuss contemporary findings in their classrooms.

The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity

no code implementations26 Jan 2022 Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, Johannes Schemmel

Since the beginning of information processing by electronic components, the nervous system has served as a metaphor for the organization of computational primitives.

Demonstrating Analog Inference on the BrainScaleS-2 Mobile System

no code implementations29 Mar 2021 Yannik Stradmann, Sebastian Billaudelle, Oliver Breitwieser, Falk Leonard Ebert, Arne Emmel, Dan Husmann, Joscha Ilmberger, Eric Müller, Philipp Spilger, Johannes Weis, Johannes Schemmel

We present the BrainScaleS-2 mobile system as a compact analog inference engine based on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram dataset.

Surrogate gradients for analog neuromorphic computing

no code implementations12 Jun 2020 Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Johannes Schemmel, Friedemann Zenke

To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum but communicate with spikes, binary events in time.

Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

no code implementations8 Nov 2018 Timo Wunderlich, Akos F. Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann, Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David Stöckel, Christian Pehle, Sebastian Billaudelle, Gerd Kiene, Christian Mauch, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici

Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency.

Cannot find the paper you are looking for? You can Submit a new open access paper.