no code implementations • 28 Feb 2025 • Jingru Gan, Peichen Zhong, Yuanqi Du, Yanqiao Zhu, Chenru Duan, Haorui Wang, Carla P. Gomes, Kristin A. Persson, Daniel Schwalbe-Koda, Wei Wang
Crystal structure generation is fundamental to materials discovery, enabling the prediction of novel materials with desired properties.
1 code implementation • 20 Dec 2024 • Wenxi Chen, Ziyang Ma, Ruiqi Yan, Yuzhe Liang, Xiquan Li, Ruiyang Xu, Zhikang Niu, Yanqiao Zhu, Yifan Yang, Zhanxun Liu, Kai Yu, Yuxuan Hu, Jinyu Li, Yan Lu, Shujie Liu, Xie Chen
Recent advancements highlight the potential of end-to-end real-time spoken dialogue systems, showcasing their low latency and high quality.
no code implementations • 2 Nov 2024 • Shu Wu, Qiang Liu, Yanqiao Zhu, Xiang Tao, Mengdi Zhang, Liang Wang
To address the aforementioned issues, this paper presents a novel Bi-level Graph Structure Learning (BiGSL) for next POI recommendation.
no code implementations • 1 Jul 2024 • Chenchen Ye, Ziniu Hu, Yihe Deng, Zijie Huang, Mingyu Derek Ma, Yanqiao Zhu, Wei Wang
Recent advancements in Large Language Models (LLMs) have empowered LLM agents to autonomously collect world information, over which to conduct reasoning to solve complex problems.
1 code implementation • 23 Jun 2024 • Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Strieth-Kalthoff, Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, Yuanqi Du, Alán Aspuru-Guzik, Kirill Neklyudov, Chao Zhang
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable.
1 code implementation • 29 Apr 2024 • ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Yanqiao Zhu, May D. Wang, Joyce C. Ho, Chao Zhang, Carl Yang
Developing effective biomedical retrieval models is important for excelling at knowledge-intensive biomedical tasks but still challenging due to the deficiency of sufficient publicly annotated biomedical data and computational resources.
no code implementations • 21 Feb 2024 • Hengchuang Yin, Zhonghui Gu, Fanhao Wang, Yiparemu Abuduhaibaier, Yanqiao Zhu, Xinming Tu, Xian-Sheng Hua, Xiao Luo, Yizhou Sun
Large language models (LLMs) such as ChatGPT have gained considerable interest across diverse research communities.
1 code implementation • NeurIPS 2023 • ZHIXUN LI, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin Zhou, Qiang Liu, Shu Wu, Liang Wang, Jeffrey Xu Yu
To fill this gap, we systematically analyze the performance of GSL in different scenarios and develop a comprehensive Graph Structure Learning Benchmark (GSLB) curated from 20 diverse graph datasets and 16 distinct GSL algorithms.
1 code implementation • 29 Sep 2023 • Yanqiao Zhu, Jeehyun Hwang, Keir Adams, Zhen Liu, Bozhao Nan, Brock Stenfors, Yuanqi Du, Jatin Chauhan, Olaf Wiest, Olexandr Isayev, Connor W. Coley, Yizhou Sun, Wei Wang
Molecular Representation Learning (MRL) has proven impactful in numerous biochemical applications such as drug discovery and enzyme design.
2 code implementations • NeurIPS 2023 • Dingshuo Chen, Yanqiao Zhu, Jieyu Zhang, Yuanqi Du, ZHIXUN LI, Qiang Liu, Shu Wu, Liang Wang
Molecular Representation Learning (MRL) has emerged as a powerful tool for drug and materials discovery in a variety of tasks such as virtual screening and inverse design.
1 code implementation • 20 Jul 2023 • Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba, Shichang Zhang, Yizhou Sun, Wei Wang
Most of the existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations.
1 code implementation • 10 Jan 2023 • ran Xu, Yue Yu, Hejie Cui, Xuan Kan, Yanqiao Zhu, Joyce Ho, Chao Zhang, Carl Yang
Our further analysis demonstrates that our proposed data selection strategy reduces the noise of pseudo labels by 36. 8% and saves 57. 3% of the time when compared with the best baseline.
no code implementations • 20 Dec 2022 • Yichen Xu, Yanqiao Zhu
As the complexity of modern software continues to escalate, software engineering has become an increasingly daunting and error-prone endeavor.
1 code implementation • 1 Nov 2022 • Yue Yu, Xuan Kan, Hejie Cui, ran Xu, Yujia Zheng, Xiangchen Song, Yanqiao Zhu, Kun Zhang, Razieh Nabi, Ying Guo, Chao Zhang, Carl Yang
To better adapt GNNs for fMRI analysis, we propose TBDS, an end-to-end framework based on \underline{T}ask-aware \underline{B}rain connectivity \underline{D}AG (short for Directed Acyclic Graph) \underline{S}tructure generation for fMRI analysis.
2 code implementations • 29 Oct 2022 • Jun Xia, Yanqiao Zhu, Yuanqi Du, Stan Z. Li
Deep learning has achieved remarkable success in learning representations for molecules, which is crucial for various biochemical applications, ranging from property prediction to drug design.
1 code implementation • 15 Oct 2022 • Yiqiao Jin, Yunsheng Bai, Yanqiao Zhu, Yizhou Sun, Wei Wang
In this paper, we formulate the novel problem of code recommendation, whose purpose is to predict the future contribution behaviors of developers given their interaction history, the semantic features of source code, and the hierarchical file structures of projects.
1 code implementation • 29 Sep 2022 • Yanqiao Zhu, Dingshuo Chen, Yuanqi Du, Yingze Wang, Qiang Liu, Shu Wu
Molecular pretraining, which learns molecular representations over massive unlabeled data, has become a prominent paradigm to solve a variety of tasks in computational chemistry and drug discovery.
1 code implementation • 30 Jun 2022 • Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He, Carl Yang
Mapping the connections of the human brain as a network is one of the most pervasive paradigms in neuroscience.
1 code implementation • 9 Jun 2022 • Yi Yang, Yanqiao Zhu, Hejie Cui, Xuan Kan, Lifang He, Ying Guo, Carl Yang
Specifically, we propose to meta-train the model on datasets of large sample sizes and transfer the knowledge to small datasets.
1 code implementation • 17 Mar 2022 • Hejie Cui, Wei Dai, Yanqiao Zhu, Xuan Kan, Antonio Aodong Chen Gu, Joshua Lukemire, Liang Zhan, Lifang He, Ying Guo, Carl Yang
To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs.
no code implementations • 13 Mar 2022 • Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, Shu Wu
In this paper, we conduct a comprehensive review on the existing literature of deep graph generation from a variety of emerging methods to its wide application areas.
3 code implementations • 16 Feb 2022 • Jun Xia, Yanqiao Zhu, Yuanqi Du, Stan Z. Li
Pretrained Language Models (PLMs) such as BERT have revolutionized the landscape of Natural Language Processing (NLP).
1 code implementation • 1 Nov 2021 • Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Mengqi Zhang, Shu Wu, Liang Wang
Although having access to multiple modalities might allow us to capture rich information, we argue that the simple coarse-grained fusion by linear combination or concatenation in previous work is insufficient to fully understand content information and item relationships. To this end, we propose a latent structure MIning with ContRastive mOdality fusion method (MICRO for brevity).
2 code implementations • 2 Sep 2021 • Yanqiao Zhu, Yichen Xu, Qiang Liu, Shu Wu
We envision this work to provide useful empirical evidence of effective GCL algorithms and offer several insights for future research.
no code implementations • 31 Aug 2021 • Yanqiao Zhu, Yichen Xu, Hejie Cui, Carl Yang, Qiang Liu, Shu Wu
Recently, heterogeneous Graph Neural Networks (GNNs) have become a de facto model for analyzing HGs, while most of them rely on a relative large number of labeled data.
no code implementations • 16 Aug 2021 • Mengqi Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu, Liang Wang
In our work, different views can be obtained based on the various relations among nodes.
no code implementations • 15 Aug 2021 • Qiang Liu, Yanqiao Zhu, Zhaocheng Liu, Yufeng Zhang, Shu Wu
To train high-performing models with the minimal annotation cost, active learning is proposed to select and label the most informative samples, yet it is still challenging to measure informativeness of samples used in DNNs.
1 code implementation • 11 Jul 2021 • Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He, Carl Yang
Interpretable brain network models for disease prediction are of great value for the advancement of neuroscience.
no code implementations • 7 Jul 2021 • Yanqiao Zhu, Hejie Cui, Lifang He, Lichao Sun, Carl Yang
Multimodal brain networks characterize complex connectivities among different brain regions from both structural and functional aspects and provide a new means for mental disease analysis.
no code implementations • 10 Jun 2021 • Liang Zeng, Jin Xu, Zijun Yao, Yanqiao Zhu, Jian Li
In this paper, we propose to substitute these redundant channels with other informative channels to achieve this goal.
1 code implementation • 19 Apr 2021 • Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu, Shuhui Wang, Liang Wang
To be specific, in the proposed LATTICE model, we devise a novel modality-aware structure learning layer, which learns item-item structures for each modality and aggregates multiple modalities to obtain latent item graphs.
Ranked #3 on
Multi-modal Recommendation
on Amazon Clothing
no code implementations • 4 Mar 2021 • Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, Shu Wu
Specifically, we first formulate a general pipeline of GSL and review state-of-the-art methods classified by the way of modeling graph structures, followed by applications of GSL across domains.
2 code implementations • 11 Jan 2021 • Yichen Xu, Yanqiao Zhu, Feng Yu, Qiang Liu, Shu Wu
To better model complex feature interaction, in this paper we propose a novel DisentanglEd Self-atTentIve NEtwork (DESTINE) framework for CTR prediction that explicitly decouples the computation of unary feature importance from pairwise interaction.
no code implementations • 30 Oct 2020 • Yanqiao Zhu, Weizhi Xu, Qiang Liu, Shu Wu
To this end, we present a minimax selection scheme that explicitly harnesses neighborhood information and discover homophilous subgraphs to facilitate active selection.
1 code implementation • 27 Oct 2020 • Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, Liang Wang
On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information.
no code implementations • 3 Sep 2020 • Yanqiao Zhu, Yichen Xu, Feng Yu, Shu Wu, Liang Wang
In CAGNN, we perform clustering on the node embeddings and update the model parameters by predicting the cluster assignments.
3 code implementations • 7 Jun 2020 • Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, Liang Wang
Moreover, our unsupervised method even surpasses its supervised counterparts on transductive tasks, demonstrating its great potential in real-world applications.
Ranked #1 on
Node Classification
on DBLP
1 code implementation • 6 May 2020 • Feng Yu, Yanqiao Zhu, Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan
However, these methods compress a session into one fixed representation vector without considering the target items to be predicted.
Ranked #3 on
Session-Based Recommendations
on yoochoose1
1 code implementation • 5 Nov 2019 • Fenyu Hu, Yanqiao Zhu, Shu Wu, Weiran Huang, Liang Wang, Tieniu Tan
Then, in order to better capture the complicated non-linearity of graph data, we present a novel GraphAIR framework which models the neighborhood interaction in addition to neighborhood aggregation.
1 code implementation • 13 Feb 2019 • Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, Tieniu Tan
Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining.
8 code implementations • 1 Nov 2018 • Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan
To obtain accurate item embedding and take complex transitions of items into account, we propose a novel method, i. e. Session-based Recommendation with Graph Neural Networks, SR-GNN for brevity.
Ranked #1 on
Session-Based Recommendations
on Gowalla
no code implementations • 4 Aug 2018 • Kai Yang, Jie Ren, Yanqiao Zhu, Weiyi Zhang
This paper discusses the human-in-the-loop active learning approach for wireless intrusion detection.