no code implementations • 9 Sep 2024 • Youngeun Kim, Jun Fang, Qin Zhang, Zhaowei Cai, Yantao Shen, Rahul Duggal, Dripta S. Raychaudhuri, Zhuowen Tu, Yifan Xing, Onkar Dabeer
Our DPaRL learns to generate dynamic prompts for inference, as opposed to relying on a static prompt pool in previous PCL methods.
no code implementations • 8 Jul 2024 • Luca Zancato, Arjun Seshadri, Yonatan Dukler, Aditya Golatkar, Yantao Shen, Benjamin Bowman, Matthew Trager, Alessandro Achille, Stefano Soatto
Recent hybrid architectures have combined eidetic and fading memory, but with limitations that do not allow the designer or the learning process to seamlessly modulate the two, nor to extend the eidetic memory span.
1 code implementation • 11 May 2023 • Zhaoyang Zhang, Yantao Shen, Kunyu Shi, Zhaowei Cai, Jun Fang, Siqi Deng, Hao Yang, Davide Modolo, Zhuowen Tu, Stefano Soatto
We present a vision-language model whose parameters are jointly trained on all tasks and fully shared among multiple heterogeneous tasks which may interfere with each other, resulting in a single model which we named Musketeer.
1 code implementation • 12 May 2022 • Yue Zhao, Yantao Shen, Yuanjun Xiong, Shuo Yang, Wei Xia, Zhuowen Tu, Bernt Schiele, Stefano Soatto
Based on the observation, we present a method, called Ensemble Logit Difference Inhibition (ELODI), to train a classification system that achieves paragon performance in both error rate and NFR, at the inference cost of a single model.
3 code implementations • 3 Mar 2022 • Binjie Zhang, Yixiao Ge, Yantao Shen, Shupeng Su, Fanzi Wu, Chun Yuan, Xuyuan Xu, Yexin Wang, Ying Shan
The task of backward-compatible representation learning is therefore introduced to support backfill-free model upgrades, where the new query features are interoperable with the old gallery features.
1 code implementation • 24 Jan 2022 • Binjie Zhang, Yixiao Ge, Yantao Shen, Yu Li, Chun Yuan, Xuyuan Xu, Yexin Wang, Ying Shan
In contrast, hot-refresh model upgrades deploy the new model immediately and then gradually improve the retrieval accuracy by backfilling the gallery on-the-fly.
no code implementations • ICLR 2022 • Binjie Zhang, Yixiao Ge, Yantao Shen, Yu Li, Chun Yuan, Xuyuan Xu, Yexin Wang, Ying Shan
In contrast, hot-refresh model upgrades deploy the new model immediately and then gradually improve the retrieval accuracy by backfilling the gallery on-the-fly.
no code implementations • 1 Jan 2021 • Yantao Shen, Fanzi Wu, Ying Shan
In this work, we introduce an approach for feature compatible learning without inheriting old classifier and training data, i. e., Non-Inherent Feature Compatible Learning.
3 code implementations • CVPR 2020 • Yantao Shen, Yuanjun Xiong, Wei Xia, Stefano Soatto
Backward compatibility is critical to quickly deploy new embedding models that leverage ever-growing large-scale training datasets and improvements in deep learning architectures and training methods.
no code implementations • ECCV 2018 • Dapeng Chen, Hongsheng Li, Xihui Liu, Yantao Shen, Zejian yuan, Xiaogang Wang
Person re-identification is an important task that requires learning discriminative visual features for distinguishing different person identities.
Ranked #24 on
Text based Person Retrieval
on CUHK-PEDES
1 code implementation • CVPR 2018 • Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, Xiaogang Wang
Person re-identification aims to robustly measure similarities between person images.
1 code implementation • CVPR 2018 • Yantao Shen, Hongsheng Li, Tong Xiao, Shuai Yi, Dapeng Chen, Xiaogang Wang
Person re-identification aims at finding a person of interest in an image gallery by comparing the probe image of this person with all the gallery images.
no code implementations • ECCV 2018 • Yantao Shen, Hongsheng Li, Shuai Yi, Dapeng Chen, Xiaogang Wang
However, existing person re-identification models mostly estimate the similarities of different image pairs of probe and gallery images independently while ignores the relationship information between different probe-gallery pairs.
Ranked #1 on
Person Re-Identification
on CUHK03
no code implementations • ICCV 2017 • Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, Xiaogang Wang
Vehicle re-identification is an important problem and has many applications in video surveillance and intelligent transportation.