no code implementations • ACL 2022 • Juncai Guo, Jin Liu, Yao Wan, Li Li, Pingyi Zhou
In this paper, we propose CODESCRIBE to model the hierarchical syntax structure of code by introducing a novel triplet position for code summarization.
no code implementations • NLP4ConvAI (ACL) 2022 • JianGuo Zhang, Kazuma Hashimoto, Yao Wan, Zhiwei Liu, Ye Liu, Caiming Xiong, Philip Yu
Pre-trained Transformer-based models were reported to be robust in intent classification.
no code implementations • EMNLP 2021 • Haiwen Hong, Jingfeng Zhang, Yin Zhang, Yao Wan, Yulei Sui
Obviously, unchanged fix is not the correct fix because it is the same as the buggy code that needs to be fixed.
no code implementations • 1 Jul 2024 • Dongping Chen, Jiawen Shi, Yao Wan, Pan Zhou, Neil Zhenqiang Gong, Lichao Sun
Additionally, we also explore the utility and trustworthiness of LLM in the self-cognition state, revealing that the self-cognition state enhances some specific tasks such as creative writing and exaggeration.
1 code implementation • 27 Jun 2024 • Siyuan Wu, Yue Huang, Chujie Gao, Dongping Chen, Qihui Zhang, Yao Wan, Tianyi Zhou, Xiangliang Zhang, Jianfeng Gao, Chaowei Xiao, Lichao Sun
Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets.
1 code implementation • 19 Jun 2024 • Yue Huang, Jingyu Tang, Dongping Chen, Bingda Tang, Yao Wan, Lichao Sun, Xiangliang Zhang
Recently, Large Language Models (LLMs) have garnered significant attention for their exceptional natural language processing capabilities.
1 code implementation • 16 Jun 2024 • Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong Wang, Huichi Zhou, Yiqiang Li, Tianshuo Zhou, Yue Yu, Chujie Gao, Qihui Zhang, Yi Gui, Zhen Li, Yao Wan, Pan Zhou, Jianfeng Gao, Lichao Sun
We evaluate the capabilities of current state-of-the-art MLLMs, including ImageLLMs and VideoLLMs, in understanding various types of GUI content, especially dynamic and sequential content.
1 code implementation • 1 Jun 2024 • Chujie Gao, Qihui Zhang, Dongping Chen, Yue Huang, Siyuan Wu, Zhengyan Fu, Yao Wan, Xiangliang Zhang, Lichao Sun
Subsequently, we present two approaches to augmenting honesty and helpfulness in LLMs: a training-free enhancement and a fine-tuning-based improvement.
1 code implementation • 26 Apr 2024 • Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai Wei, Wei Zhao, Guandong Xu, Hai Jin
In particular, we first explore the ways of transforming structured tabular data into sequential text prompts, as to feed them into LLMs and analyze which table content contributes most to the NL2Vis.
1 code implementation • 24 Apr 2024 • Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin
We argue that these factual reasoning-based explanations cannot answer critical what-if questions: What would happen to the GNN's decision if we were to alter the code graph into alternative structures?
1 code implementation • 24 Apr 2024 • Batu Guan, Yao Wan, Zhangqian Bi, Zheng Wang, Hongyu Zhang, Pan Zhou, Lichao Sun
Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP in watermarking LLMs for code generation while maintaining the syntactical correctness of code.
1 code implementation • 22 Apr 2024 • Yao Wan, Guanghua Wan, Shijie Zhang, Hongyu Zhang, Pan Zhou, Hai Jin, Lichao Sun
Subsequently, the membership classifier can be effectively employed to deduce the membership status of a given code sample based on the output of a target code completion model.
no code implementations • 9 Apr 2024 • Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang, Yi Su, Shaoling Dong, Xing Zhou, Wenbin Jiang
Automatically generating UI code from webpage design visions can significantly alleviate the burden of developers, enabling beginner developers or designers to directly generate Web pages from design diagrams.
1 code implementation • 25 Mar 2024 • Zhangqian Bi, Yao Wan, Zheng Wang, Hongyu Zhang, Batu Guan, Fangxin Lu, Zili Zhang, Yulei Sui, Hai Jin, Xuanhua Shi
Large Language Models (LLMs) have shown remarkable progress in automated code generation.
no code implementations • 20 Feb 2024 • Wei Zhao, Zhitao Hou, Siyuan Wu, Yan Gao, Haoyu Dong, Yao Wan, Hongyu Zhang, Yulei Sui, Haidong Zhang
Writing formulas on spreadsheets, such as Microsoft Excel and Google Sheets, is a widespread practice among users performing data analysis.
1 code implementation • 7 Feb 2024 • Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang, Yao Wan, Pan Zhou, Lichao Sun
Drawing inspiration from the concept of LLM-as-a-Judge within LLMs, this paper introduces a novel benchmark, termed MLLM-as-a-Judge, to assess the ability of MLLMs in assisting judges across diverse modalities, encompassing three distinct tasks: Scoring Evaluation, Pair Comparison, and Batch Ranking.
2 code implementations • 31 Jan 2024 • Yuan Li, Yue Huang, Yuli Lin, Siyuan Wu, Yao Wan, Lichao Sun
Do large language models (LLMs) exhibit any forms of awareness similar to humans?
2 code implementations • 11 Jan 2024 • Qihui Zhang, Chujie Gao, Dongping Chen, Yue Huang, Yixin Huang, Zhenyang Sun, Shilin Zhang, Weiye Li, Zhengyan Fu, Yao Wan, Lichao Sun
With the rapid development and widespread application of Large Language Models (LLMs), the use of Machine-Generated Text (MGT) has become increasingly common, bringing with it potential risks, especially in terms of quality and integrity in fields like news, education, and science.
no code implementations • 30 Dec 2023 • Yao Wan, Yang He, Zhangqian Bi, JianGuo Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin, Philip S. Yu
We also benchmark several state-of-the-art neural models for code intelligence, and provide an open-source toolkit tailored for the rapid prototyping of deep-learning-based code intelligence models.
no code implementations • 17 Dec 2023 • Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Qingyang Wu, Zhongfen Deng, Jiangshu Du, Shuaiqi Liu, Yunlong Xu, Philip S. Yu
Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language, transforming them into structured outputs that combine elements of both natural language and intent/slot tags.
no code implementations • 31 Oct 2023 • Wenting Zhao, Ye Liu, Tong Niu, Yao Wan, Philip S. Yu, Shafiq Joty, Yingbo Zhou, Semih Yavuz
Moreover, a significant gap in the current landscape is the absence of a realistic benchmark for evaluating the effectiveness of grounding LLMs on heterogeneous knowledge sources (e. g., knowledge base and text).
1 code implementation • 4 Oct 2023 • Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, Neil Zhenqiang Gong, Lichao Sun
However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests.
no code implementations • 20 Sep 2023 • Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Zhongfen Deng, Philip S. Yu
Furthermore, TAG-QA outperforms the end-to-end model T5 by 16% and 12% on BLEU-4 and PARENT F-score, respectively.
1 code implementation • 20 Sep 2023 • Yibo Wang, Wenting Zhao, Yao Wan, Zhongfen Deng, Philip S. Yu
In this paper, we propose to incorporate the label dependencies among entity types into a multi-task learning framework for better MRC-based NER.
no code implementations • 2 Jan 2023 • Jiahao Zhu, Daizong Liu, Pan Zhou, Xing Di, Yu Cheng, Song Yang, Wenzheng Xu, Zichuan Xu, Yao Wan, Lichao Sun, Zeyu Xiong
All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning.
1 code implementation • 24 Aug 2022 • Fengji Zhang, Jin Liu, Yao Wan, Xiao Yu, Xiao Liu, Jacky Keung
Stack Overflow is one of the most popular programming communities where developers can seek help for their encountered problems.
no code implementations • 15 Jun 2022 • Yue Wang, Yao Wan, Lu Bai, Lixin Cui, Zhuo Xu, Ming Li, Philip S. Yu, Edwin R Hancock
To alleviate the challenges of building Knowledge Graphs (KG) from scratch, a more general task is to enrich a KG using triples from an open corpus, where the obtained triples contain noisy entities and relations.
no code implementations • Findings (NAACL) 2022 • Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang, Pingyi Zhou, Li Li, Hao Wu, Jin Liu
Specifically, we first extract multiple code views using compiler tools, and learn the complementary information among them under a contrastive learning framework.
no code implementations • Findings (ACL) 2022 • Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang, Qun Liu
Automatically generating compilable programs with (or without) natural language descriptions has always been a touchstone problem for computational linguistics and automated software engineering.
no code implementations • 8 Mar 2022 • Jibing Gong, Yao Wan, Ye Liu, Xuewen Li, Yi Zhao, Cheng Wang, YuTing Lin, Xiaohan Fang, Wenzheng Feng, Jingyi Zhang, Jie Tang
Despite the usefulness of this service, we consider that recommending courses to users directly may neglect their varying degrees of expertise.
1 code implementation • Findings (EMNLP) 2021 • Wenting Zhao, Ye Liu, Yao Wan, Philip S. Yu
Few-shot table-to-text generation is a task of composing fluent and faithful sentences to convey table content using limited data.
1 code implementation • 14 Feb 2022 • Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin
In this paper, we conduct a thorough structural analysis aiming to provide an interpretation of pre-trained language models for source code (e. g., CodeBERT, and GraphCodeBERT) from three distinctive perspectives: (1) attention analysis, (2) probing on the word embedding, and (3) syntax tree induction.
1 code implementation • 19 Jan 2022 • Yi Gui, Yao Wan, Hongyu Zhang, Huifang Huang, Yulei Sui, Guandong Xu, Zhiyuan Shao, Hai Jin
Binary-source code matching plays an important role in many security and software engineering related tasks such as malware detection, reverse engineering and vulnerability assessment.
1 code implementation • 6 Dec 2021 • Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z. Chen, Jian Wu
A special basic block is built using AbstLays, and we construct a family of Deep Abstract Networks (DANets) for tabular data classification and regression by stacking such blocks.
no code implementations • 29 Nov 2021 • Dezhong Yao, Wanning Pan, Michael J O'Neill, Yutong Dai, Yao Wan, Hai Jin, Lichao Sun
To this end, this paper proposes FedHM, a novel heterogeneous federated model compression framework, distributing the heterogeneous low-rank models to clients and then aggregating them into a full-rank model.
1 code implementation • EMNLP 2021 • Ye Liu, Jian-Guo Zhang, Yao Wan, Congying Xia, Lifang He, Philip S. Yu
To capture the semantic graph structure from raw text, most existing summarization approaches are built on GNNs with a pre-trained model.
no code implementations • 10 Aug 2021 • Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, Xin Jiang
Code representation learning, which aims to encode the semantics of source code into distributed vectors, plays an important role in recent deep-learning-based models for code intelligence.
no code implementations • 30 Jun 2021 • Dezhong Yao, Wanning Pan, Yutong Dai, Yao Wan, Xiaofeng Ding, Hai Jin, Zheng Xu, Lichao Sun
Federated learning enables multiple clients to collaboratively learn a global model by periodically aggregating the clients' models without transferring the local data.
1 code implementation • 8 Jun 2021 • JianGuo Zhang, Kazuma Hashimoto, Yao Wan, Zhiwei Liu, Ye Liu, Caiming Xiong, Philip S. Yu
Pre-trained Transformer-based models were reported to be robust in intent classification.
no code implementations • EACL 2021 • Ye Liu, Yao Wan, JianGuo Zhang, Wenting Zhao, Philip Yu
In this paper, we claim that the syntactic and semantic structures among natural language are critical for non-autoregressive machine translation and can further improve the performance.
no code implementations • 22 Jan 2021 • Ye Liu, Yao Wan, Jian-Guo Zhang, Wenting Zhao, Philip S. Yu
In this paper, we claim that the syntactic and semantic structures among natural language are critical for non-autoregressive machine translation and can further improve the performance.
1 code implementation • EMNLP 2020 • Jian-Guo Zhang, Kazuma Hashimoto, Wenhao Liu, Chien-Sheng Wu, Yao Wan, Philip S. Yu, Richard Socher, Caiming Xiong
Intent detection is one of the core components of goal-oriented dialog systems, and detecting out-of-scope (OOS) intents is also a practically important skill.
no code implementations • 13 Oct 2020 • Yue Wang, Zhuo Xu, Lu Bai, Yao Wan, Lixin Cui, Qian Zhao, Edwin R. Hancock, Philip S. Yu
To verify the effectiveness of our proposed method, we conduct extensive experiments on four real-world datasets as well as compare our method with state-of-the-art methods.
1 code implementation • 26 Sep 2020 • Ye Liu, Yao Wan, Lifang He, Hao Peng, Philip S. Yu
To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output.
1 code implementation • Joint Conference on Lexical and Computational Semantics 2020 • Jian-Guo Zhang, Kazuma Hashimoto, Chien-Sheng Wu, Yao Wan, Philip S. Yu, Richard Socher, Caiming Xiong
Dialog state tracking (DST) is a core component in task-oriented dialog systems.
Ranked #4 on Multi-domain Dialogue State Tracking on MULTIWOZ 2.0
dialog state tracking Multi-domain Dialogue State Tracking +1
no code implementations • 13 Aug 2019 • Yue Wang, Yao Wan, Chenwei Zhang, Lixin Cui, Lu Bai, Philip S. Yu
During the iterations, our model updates the parallel policies and the corresponding scenario-based regrets for agents simultaneously.
no code implementations • NAACL 2019 • Jian-Guo Zhang, Pengcheng Zou, Zhao Li, Yao Wan, Xiuming Pan, Yu Gong, Philip S. Yu
To address this discrepancy, previous studies mainly consider textual information of long product titles and lacks of human-like view during training and evaluation process.
2 code implementations • 17 Nov 2018 • Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, Philip S. Yu
To the best of our knowledge, most state-of-the-art approaches follow an encoder-decoder framework which encodes the code into a hidden space and then decode it into natural language space, suffering from two major drawbacks: a) Their encoders only consider the sequential content of code, ignoring the tree structure which is also critical for the task of code summarization, b) Their decoders are typically trained to predict the next word by maximizing the likelihood of next ground-truth word with previous ground-truth word given.
no code implementations • 12 Nov 2018 • Yao Wan, Wenqiang Yan, Jianwei Gao, Zhou Zhao, Jian Wu, Philip S. Yu
Dialogue Act (DA) classification is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention.
Ranked #5 on Dialogue Act Classification on Switchboard corpus
no code implementations • 11 Nov 2018 • Jian-Guo Zhang, Pengcheng Zou, Zhao Li, Yao Wan, Ye Liu, Xiuming Pan, Yu Gong, Philip S. Yu
Nowadays, an increasing number of customers are in favor of using E-commerce Apps to browse and purchase products.