Search Results for author: Yao Zhang

Found 74 papers, 33 papers with code

Semi-supervised Intent Discovery with Contrastive Learning

no code implementations EMNLP (NLP4ConvAI) 2021 Xiang Shen, Yinge Sun, Yao Zhang, Mani Najmabadi

User intent discovery is a key step in developing a Natural Language Understanding (NLU) module at the core of any modern Conversational AI system.

Contrastive Learning Intent Discovery +1

Chinese Intermediate English Learners outdid ChatGPT in deep cohesion: Evidence from English narrative writing

no code implementations21 Mar 2023 Tongquan Zhou, Siyi Cao, Siruo Zhou, Yao Zhang, Aijing He

The data were analyzed in terms of five discourse components using Coh-Metrix (a special instrument for analyzing language discourses), and the results revealed that ChatGPT performed better than human writers in narrativity, word concreteness, and referential cohesion, but worse in syntactic simplicity and deep cohesion in its initial version.

Chatbot

High speed free-space optical communication using standard fiber communication component without optical amplification

no code implementations27 Feb 2023 Yao Zhang, Hua-Ying Liu, Xiaoyi Liu, Peng Xu, Xiang Dong, Pengfei Fan, Xiaohui Tian, Hua Yu, Dong Pan, Zhijun Yin, Guilu Long, Shi-Ning Zhu, Zhenda Xie

Free-space optical communication (FSO) can achieve fast, secure and license-free communication without need for physical cables, making it a cost-effective, energy-efficient and flexible solution when the fiber connection is unavailable.

TIGER: Temporal Interaction Graph Embedding with Restarts

1 code implementation13 Feb 2023 Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng, Yangyong Zhu

However, due to the entangled temporal and structural dependencies, existing methods have to process the sequence of events chronologically and consecutively to ensure node representations are up-to-date.

Graph Embedding

ConsRec: Learning Consensus Behind Interactions for Group Recommendation

1 code implementation7 Feb 2023 Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Jiawei Zhang, Yangyong Zhu, Philip S. Yu

Since group activities have become very common in daily life, there is an urgent demand for generating recommendations for a group of users, referred to as group recommendation task.

MULTI-VIEW LEARNING

What Decreases Editing Capability? Domain-Specific Hybrid Refinement for Improved GAN Inversion

2 code implementations28 Jan 2023 Pu Cao, Lu Yang, Dongxu Liu, Shan Li, Yao Zhang, Qing Song

To tackle this problem, we introduce Domain-Specific Hybrid Refinement (DHR), which draws on the advantages and disadvantages of two mainstream refinement techniques to maintain editing ability with fidelity improvement.

Learning to Learn Domain-invariant Parameters for Domain Generalization

no code implementations4 Nov 2022 Feng Hou, Yao Zhang, Yang Liu, Jin Yuan, Cheng Zhong, Yang Zhang, Zhongchao shi, Jianping Fan, Zhiqiang He

Due to domain shift, deep neural networks (DNNs) usually fail to generalize well on unknown test data in practice.

Domain Generalization

SAP-DETR: Bridging the Gap Between Salient Points and Queries-Based Transformer Detector for Fast Model Convergency

1 code implementation CVPR 2023 Yang Liu, Yao Zhang, Yixin Wang, Yang Zhang, Jiang Tian, Zhongchao shi, Jianping Fan, Zhiqiang He

To bridge the gap between the reference points of salient queries and Transformer detectors, we propose SAlient Point-based DETR (SAP-DETR) by treating object detection as a transformation from salient points to instance objects.

object-detection Object Detection

RuDi: Explaining Behavior Sequence Models by Automatic Statistics Generation and Rule Distillation

1 code implementation12 Aug 2022 Yao Zhang, Yun Xiong, Yiheng Sun, Caihua Shan, Tian Lu, Hui Song, Yangyong Zhu

We propose a two-stage method, RuDi, that distills the knowledge of black-box teacher models into rule-based student models.

Fairness

ReCo: A Dataset for Residential Community Layout Planning

1 code implementation8 Jun 2022 Xi Chen, Yun Xiong, Siqi Wang, Haofen Wang, Tao Sheng, Yao Zhang, Yu Ye

In order to address the issues and advance a benchmark dataset for various intelligent spatial design and analysis applications in the development of smart city, we introduce Residential Community Layout Planning (ReCo) Dataset, which is the first and largest open-source vector dataset related to real-world community to date.

Layout Design

mmFormer: Multimodal Medical Transformer for Incomplete Multimodal Learning of Brain Tumor Segmentation

1 code implementation6 Jun 2022 Yao Zhang, Nanjun He, Jiawei Yang, Yuexiang Li, Dong Wei, Yawen Huang, Yang Zhang, Zhiqiang He, Yefeng Zheng

Concretely, we propose a novel multimodal Medical Transformer (mmFormer) for incomplete multimodal learning with three main components: the hybrid modality-specific encoders that bridge a convolutional encoder and an intra-modal Transformer for both local and global context modeling within each modality; an inter-modal Transformer to build and align the long-range correlations across modalities for modality-invariant features with global semantics corresponding to tumor region; a decoder that performs a progressive up-sampling and fusion with the modality-invariant features to generate robust segmentation.

Brain Tumor Segmentation Tumor Segmentation

Decoupled Pyramid Correlation Network for Liver Tumor Segmentation from CT images

no code implementations26 May 2022 Yao Zhang, Jiawei Yang, Yang Liu, Jiang Tian, Siyun Wang, Cheng Zhong, Zhongchao shi, Yang Zhang, Zhiqiang He

In this paper, we propose a Decoupled Pyramid Correlation Network (DPC-Net) that exploits attention mechanisms to fully leverage both low- and high-level features embedded in FCN to segment liver tumor.

Computed Tomography (CT) Image Segmentation +2

Interacting with Non-Cooperative User: A New Paradigm for Proactive Dialogue Policy

no code implementations7 Apr 2022 Wenqiang Lei, Yao Zhang, Feifan Song, Hongru Liang, Jiaxin Mao, Jiancheng Lv, Zhenglu Yang, Tat-Seng Chua

To this end, we contribute to advance the study of the proactive dialogue policy to a more natural and challenging setting, i. e., interacting dynamically with users.

Collaborative Driving: Learning- Aided Joint Topology Formulation and Beamforming

no code implementations18 Mar 2022 Yao Zhang, Changle Li, Tom H. Luan, Chau Yuen Yuchuan Fu

Currently, autonomous vehicles are able to drive more naturally based on the driving policies learned from millions of driving miles in real environments.

Autonomous Driving

ECOLA: Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations

no code implementations17 Mar 2022 Zhen Han, Ruotong Liao, Jindong Gu, Yao Zhang, Zifeng Ding, Yujia Gu, Heinz Köppl, Hinrich Schütze, Volker Tresp

Since conventional knowledge embedding models cannot take full advantage of the abundant textual information, there have been extensive research efforts in enhancing knowledge embedding using texts.

Knowledge Graph Embedding Link Prediction +1

Graph Attention Transformer Network for Multi-Label Image Classification

no code implementations8 Mar 2022 Jin Yuan, Shikai Chen, Yao Zhang, Zhongchao shi, Xin Geng, Jianping Fan, Yong Rui

Subsequently, we design the graph attention transformer layer to transfer this adjacency matrix to adapt to the current domain.

Classification Graph Attention +2

Learning Based Task Offloading in Digital Twin Empowered Internet of Vehicles

no code implementations28 Dec 2021 Jinkai Zheng, Tom H. Luan, Longxiang Gao, Yao Zhang, Yuan Wu

In specific, to preserve the precious computing resource at different levels for most appropriate computing tasks, we integrate a learning scheme based on the prediction of futuristic computing tasks in DT.

Autonomous Vehicles Scheduling

Reinforcement Learning Enhanced Explainer for Graph Neural Networks

no code implementations NeurIPS 2021 Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, Dongsheng Li

To address these issues, we propose a RL-enhanced GNN explainer, RG-Explainer, which consists of three main components: starting point selection, iterative graph generation and stopping criteria learning.

Combinatorial Optimization Graph Generation +2

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes

1 code implementation NeurIPS 2021 Zhaozhi Qian, Yao Zhang, Ioana Bica, Angela Wood, Mihaela van der Schaar

Most of the medical observational studies estimate the causal treatment effects using electronic health records (EHR), where a patient's covariates and outcomes are both observed longitudinally.

A Survey of Visual Transformers

1 code implementation11 Nov 2021 Yang Liu, Yao Zhang, Yixin Wang, Feng Hou, Jin Yuan, Jiang Tian, Yang Zhang, Zhongchao shi, Jianping Fan, Zhiqiang He

Transformer, an attention-based encoder-decoder model, has already revolutionized the field of natural language processing (NLP).

A semi-automatic ultrasound image analysis system for the grading diagnosis of COVID-19 pneumonia

no code implementations4 Nov 2021 Yuanyuan Wang, Yao Zhang, Qiong He, Hongen Liao, Jianwen Luo

This paper proposes a semi-automatic system based on quantitative characterization of the specific image patterns in lung ultrasound (LUS) images, in order to assess the lung conditions of patients with COVID-19 pneumonia, as well as to differentiate between the severe / and no-severe cases.

Specificity

Fact-Tree Reasoning for N-ary Question Answering over Knowledge Graphs

no code implementations Findings (ACL) 2022 Yao Zhang, Peiyao Li, Hongru Liang, Adam Jatowt, Zhenglu Yang

In the question answering(QA) task, multi-hop reasoning framework has been extensively studied in recent years to perform more efficient and interpretable answer reasoning on the Knowledge Graph(KG).

Knowledge Graphs Question Answering

How Powerful is Graph Convolution for Recommendation?

1 code implementation17 Aug 2021 Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, Khaled B. Letaief, Dongsheng Li

In this paper, we endeavor to obtain a better understanding of GCN-based CF methods via the lens of graph signal processing.

Collaborative Filtering

Adaptive Multi-Resolution Attention with Linear Complexity

no code implementations10 Aug 2021 Yao Zhang, Yunpu Ma, Thomas Seidl, Volker Tresp

Transformers have improved the state-of-the-art across numerous tasks in sequence modeling.

Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects

1 code implementation6 Aug 2021 Yao Zhang, Jeroen Berrevoets, Mihaela van der Schaar

Conditional average treatment effects (CATEs) allow us to understand the effect heterogeneity across a large population of individuals.

Dimensionality Reduction

Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation

2 code implementations21 Jul 2021 Yao Zhang, Jiawei Yang, Jiang Tian, Zhongchao shi, Cheng Zhong, Yang Zhang, Zhiqiang He

To this end, we propose a novel mutual learning (ML) strategy for effective and robust multi-modal liver tumor segmentation.

Computed Tomography (CT) Image Segmentation +2

TumorCP: A Simple but Effective Object-Level Data Augmentation for Tumor Segmentation

1 code implementation21 Jul 2021 Jiawei Yang, Yao Zhang, Yuan Liang, Yang Zhang, Lei He, Zhiqiang He

Experiments on kidney tumor segmentation task demonstrate that TumorCP surpasses the strong baseline by a remarkable margin of 7. 12% on tumor Dice.

Data Augmentation Tumor Segmentation

Measurement of the absolute branching fractions for purely leptonic $D_s^+$ decays

no code implementations23 Feb 2021 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G. Y. Hou, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, H. F. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, A. Q. Zhang, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Constraining our measurement to the Standard Model expectation of lepton universality ($R=9. 75$), we find the more precise results $\cal B(D_s^+\to \tau^+\nu_\tau) = (5. 22\pm0. 10\pm 0. 14)\times10^{-2}$ and $A_{\it CP}(\tau^\pm\nu_\tau) = (-0. 1\pm1. 9\pm1. 0)\%$.

High Energy Physics - Experiment

Cross section measurement of $e^+e^- \to p\bar{p}η$ and $e^+e^- \to p\bar{p}ω$ at center-of-mass energies between 3.773 GeV and 4.6 GeV

no code implementations8 Feb 2021 M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N. Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Based on $14. 7~\textrm{fb}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at 17 different center-of-mass energies between $3. 7730~\textrm{GeV}$ and $4. 5995~\textrm{GeV}$, Born cross sections of the two processes $e^+e^- \to p\bar{p}\eta$ and $e^+e^- \to p\bar{p}\omega$ are measured for the first time.

High Energy Physics - Experiment

SyncTwin: Transparent Treatment Effect Estimation under Temporal Confounding

no code implementations1 Jan 2021 Zhaozhi Qian, Yao Zhang, Ioana Bica, Angela Wood, Mihaela van der Schaar

Estimating causal treatment effects using observational data is a problem with few solutions when the confounder has a temporal structure, e. g. the history of disease progression might impact both treatment decisions and clinical outcomes.

Measurements of the center-of-mass energies of $e^{+}e^{-}$ collisions at BESIII

no code implementations29 Dec 2020 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, N Hüsken, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

During the 2016-17 and 2018-19 running periods, the BESIII experiment collected 7. 5~fb$^{-1}$ of $e^+e^-$ collision data at center-of-mass energies ranging from 4. 13 to 4. 44 GeV.

High Energy Physics - Experiment

Semi-supervised Cardiac Image Segmentation via Label Propagation and Style Transfer

1 code implementation29 Dec 2020 Yao Zhang, Jiawei Yang, Feng Hou, Yang Liu, Yixin Wang, Jiang Tian, Cheng Zhong, Yang Zhang, Zhiqiang He

Accurate segmentation of cardiac structures can assist doctors to diagnose diseases, and to improve treatment planning, which is highly demanded in the clinical practice.

Image Segmentation Semantic Segmentation +1

Exploring Instance-Level Uncertainty for Medical Detection

no code implementations23 Dec 2020 Jiawei Yang, Yuan Liang, Yao Zhang, Weinan Song, Kun Wang, Lei He

The ability of deep learning to predict with uncertainty is recognized as key for its adoption in clinical routines.

Lung Nodule Detection

Generalized Relation Learning with Semantic Correlation Awareness for Link Prediction

no code implementations22 Dec 2020 Yao Zhang, Xu Zhang, Jun Wang, Hongru Liang, Wenqiang Lei, Zhe Sun, Adam Jatowt, Zhenglu Yang

The current methods for the link prediction taskhavetwonaturalproblems:1)the relation distributions in KGs are usually unbalanced, and 2) there are many unseen relations that occur in practical situations.

Knowledge Graphs Link Prediction

Argument Mining Driven Analysis of Peer-Reviews

2 code implementations10 Dec 2020 Michael Fromm, Evgeniy Faerman, Max Berrendorf, Siddharth Bhargava, Ruoxia Qi, Yao Zhang, Lukas Dennert, Sophia Selle, Yang Mao, Thomas Seidl

Peer reviewing is a central process in modern research and essential for ensuring high quality and reliability of published work.

Argument Mining

Search for the reaction $e^{+}e^{-} \rightarrow π^{+}π^{-} χ_{cJ}$ and a charmonium-like structure decaying to $χ_{cJ}π^{\pm}$ between 4.18 and 4.60 GeV

no code implementations4 Dec 2020 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, N. Hüsken, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

We search for the process $e^{+}e^{-}\rightarrow \pi ^{+}\pi ^{-} \chi_{cJ}$ ($J=0, 1, 2$) and for a charged charmonium-like state in the $\pi ^{\pm} \chi_{cJ}$ subsystem.

High Energy Physics - Experiment

Gradient Regularized V-Learning for Dynamic Treatment Regimes

1 code implementation NeurIPS 2020 Yao Zhang, Mihaela van der Schaar

A dynamic treatment regime (DTR) is a sequence of treatment rules indicating how to individualize treatments for a patient based on the previously assigned treatments and the evolving covariate history.

Learning outside the Black-Box: The pursuit of interpretable models

1 code implementation NeurIPS 2020 Jonathan Crabbé, Yao Zhang, William Zame, Mihaela van der Schaar

Machine Learning has proved its ability to produce accurate models but the deployment of these models outside the machine learning community has been hindered by the difficulties of interpreting these models.

BIG-bench Machine Learning

AbdomenCT-1K: Is Abdominal Organ Segmentation A Solved Problem?

1 code implementation28 Oct 2020 Jun Ma, Yao Zhang, Song Gu, Cheng Zhu, Cheng Ge, Yichi Zhang, Xingle An, Congcong Wang, Qiyuan Wang, Xin Liu, Shucheng Cao, Qi Zhang, Shangqing Liu, Yunpeng Wang, Yuhui Li, Jian He, Xiaoping Yang

With the unprecedented developments in deep learning, automatic segmentation of main abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have achieved comparable results with inter-rater variability on many benchmark datasets.

Continual Learning Organ Segmentation +1

Double-Uncertainty Weighted Method for Semi-supervised Learning

no code implementations19 Oct 2020 Yixin Wang, Yao Zhang, Jiang Tian, Cheng Zhong, Zhongchao shi, Yang Zhang, Zhiqiang He

We train the teacher model using Bayesian deep learning to obtain double-uncertainty, i. e. segmentation uncertainty and feature uncertainty.

GMH: A General Multi-hop Reasoning Model for KG Completion

no code implementations EMNLP 2021 Yao Zhang, Hongru Liang, Adam Jatowt, Wenqiang Lei, Xin Wei, Ning Jiang, Zhenglu Yang

To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios.

Knowledge Graphs

Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning

3 code implementations22 Sep 2020 Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, Yangyong Zhu

Instead of learning on the complete input graph data, with a novel data augmentation strategy, \textsc{Subg-Con} learns node representations through a contrastive loss defined based on subgraphs sampled from the original graph instead.

Data Augmentation Graph Representation Learning +2

Model independent determination of the spin of the $Ω^{-}$ and its polarization alignment in $ψ(3686)\rightarrowΩ^{-}\barΩ^{+}$

no code implementations7 Jul 2020 M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, Anita, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. B. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. -B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, X. L. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

We present an analysis of the process $\psi(3686) \to \Omega^- \bar{\Omega}^+$ ($\Omega^-\to K^-\Lambda$, $\bar{\Omega}^+\to K^+\bar{\Lambda}$, $\Lambda\to p\pi^-$, $\bar{\Lambda}\to \bar{p}\pi^+$) based on a data set of $448\times 10^6$ $\psi(3686)$ decays collected with the BESIII detector at the BEPCII electron-positron collider.

High Energy Physics - Experiment

AutoCP: Automated Pipelines for Accurate Prediction Intervals

no code implementations24 Jun 2020 Yao Zhang, William Zame, Mihaela van der Schaar

Successful application of machine learning models to real-world prediction problems, e. g. financial forecasting and personalized medicine, has proved to be challenging, because such settings require limiting and quantifying the uncertainty in the model predictions, i. e. providing valid and accurate prediction intervals.

AutoML BIG-bench Machine Learning +3

Robust Recursive Partitioning for Heterogeneous Treatment Effects with Uncertainty Quantification

1 code implementation NeurIPS 2020 Hyun-Suk Lee, Yao Zhang, William Zame, Cong Shen, Jang-Won Lee, Mihaela van der Schaar

Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE) and identify subgroups by maximizing the difference across subgroups of the average treatment effect in each subgroup.

Recommendation Systems

Sybil-proof Answer Querying Mechanism

no code implementations27 May 2020 Yao Zhang, Xiuzhen Zhang, Dengji Zhao

We study a question answering problem on a social network, where a requester is seeking an answer from the agents on the network.

Computer Science and Game Theory

Stepwise Model Selection for Sequence Prediction via Deep Kernel Learning

1 code implementation12 Jan 2020 Yao Zhang, Daniel Jarrett, Mihaela van der Schaar

In this paper, we propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.

AutoML Bayesian Optimization +1

Semantic Feature Attention Network for Liver Tumor Segmentation in Large-scale CT database

no code implementations1 Nov 2019 Yao Zhang, Cheng Zhong, Yang Zhang, Zhongchao shi, Zhiqiang He

In the SFAN, a Semantic Attention Transmission (SAT) module is designed to select discriminative low-level localization details with the guidance of neighboring high-level semantic information.

Computed Tomography (CT) Tumor Segmentation

Cascaded Volumetric Convolutional Network for Kidney Tumor Segmentation from CT volumes

no code implementations5 Oct 2019 Yao Zhang, Yixin Wang, Feng Hou, Jiawei Yang, Guangwei Xiong, Jiang Tian, Cheng Zhong

Automated segmentation of kidney and tumor from 3D CT scans is necessary for the diagnosis, monitoring, and treatment planning of the disease.

Tumor Segmentation

Lifelong Bayesian Optimization

no code implementations29 May 2019 Yao Zhang, James Jordon, Ahmed M. Alaa, Mihaela van der Schaar

In this paper, we present Lifelong Bayesian Optimization (LBO), an online, multitask Bayesian optimization (BO) algorithm designed to solve the problem of model selection for datasets arriving and evolving over time.

Bayesian Optimization Model Selection

Collaborative Data Acquisition

no code implementations14 May 2019 Wen Zhang, Yao Zhang, Dengji Zhao

We consider a requester who acquires a set of data (e. g. images) that is not owned by one party.

PocketFlow: An Automated Framework for Compressing and Accelerating Deep Neural Networks

1 code implementation NIPS Workshop CDNNRIA 2018 Jiaxiang Wu, Yao Zhang, Haoli Bai, Huasong Zhong, Jinlong Hou, Wei Liu, Wenbing Huang, Junzhou Huang

Deep neural networks are widely used in various domains, but the prohibitive computational complexity prevents their deployment on mobile devices.

Model Compression

Geometry of energy landscapes and the optimizability of deep neural networks

no code implementations1 Aug 2018 Simon Becker, Yao Zhang, Alpha A. Lee

Deep neural networks are workhorse models in machine learning with multiple layers of non-linear functions composed in series.

BIG-bench Machine Learning

Dermoscopic Image Analysis for ISIC Challenge 2018

no code implementations24 Jul 2018 Jinyi Zou, Xiao Ma, Cheng Zhong, Yao Zhang

This short paper reports the algorithms we used and the evaluation performances for ISIC Challenge 2018.

Classification General Classification +3

BigDL: A Distributed Deep Learning Framework for Big Data

2 code implementations16 Apr 2018 Jason Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang Wang, Xianyan Jia, Cherry Zhang, Yan Wan, Zhichao Li, Jiao Wang, Shengsheng Huang, Zhongyuan Wu, Yang Wang, Yuhao Yang, Bowen She, Dongjie Shi, Qi Lu, Kai Huang, Guoqiong Song

This paper presents BigDL (a distributed deep learning framework for Apache Spark), which has been used by a variety of users in the industry for building deep learning applications on production big data platforms.

Fraud Detection Management +1

Application of Convolutional Neural Network to Predict Airfoil Lift Coefficient

no code implementations29 Dec 2017 Yao Zhang, Woong-Je Sung, Dimitri Mavris

The adaptability of the convolutional neural network (CNN) technique for aerodynamic meta-modeling tasks is probed in this work.

Distributed Representation of Subgraphs

no code implementations22 Feb 2017 Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, B. Aditya Prakash

Motivated by the recent successes of embeddings in natural language processing, researchers have tried to find network embeddings in order to exploit machine learning algorithms for mining tasks like node classification and edge prediction.

Community Detection Node Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.