no code implementations • EMNLP 2020 • Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang, Rahul Agrawal, Edward Cui, Sining Wei, Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu, Shuguang Liu, Fan Yang, Daniel Campos, Rangan Majumder, Ming Zhou
In this paper, we introduce XGLUE, a new benchmark dataset to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora, and evaluate their performance across a diverse set of cross-lingual tasks.
no code implementations • ACL 2022 • Yuan Chai, Yaobo Liang, Nan Duan
Our main conclusion is that the contribution of constituent order and word co-occurrence is limited, while the composition is more crucial to the success of cross-linguistic transfer.
no code implementations • ACL 2022 • Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang, Nan Duan
Second, to prevent multi-view embeddings from collapsing to the same one, we further propose a global-local loss with annealed temperature to encourage the multiple viewers to better align with different potential queries.
1 code implementation • 26 Sep 2021 • Xiaoze Jiang, Yaobo Liang, Weizhu Chen, Nan Duan
The results on MLQA and NER exhibit the superiority of XLM-K in knowledge related tasks.
no code implementations • Findings (EMNLP) 2021 • Yimin Fan, Yaobo Liang, Alexandre Muzio, Hany Hassan, Houqiang Li, Ming Zhou, Nan Duan
Then we cluster all the target languages into multiple groups and name each group as a representation sprachbund.
no code implementations • 13 Mar 2021 • Fei Yuan, Longtu Zhang, Huang Bojun, Yaobo Liang
In most machine learning tasks, we evaluate a model $M$ on a given data population $S$ by measuring a population-level metric $F(S;M)$.
no code implementations • 16 Sep 2020 • Martin Kuo, Yaobo Liang, Lei Ji, Nan Duan, Linjun Shou, Ming Gong, Peng Chen
The semi-structured answer has two advantages which are more readable and falsifiable compared to span answer.
1 code implementation • 10 Jul 2020 • Xuan Shan, Chuanjie Liu, Yiqian Xia, Qi Chen, Yusi Zhang, Kaize Ding, Yaobo Liang, Angen Luo, Yuxiang Luo
Deep matching models aim to facilitate search engines retrieving more relevant documents by mapping queries and documents into semantic vectors in the first-stage retrieval.
1 code implementation • ACL 2020 • Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, Ting Liu
Natural Questions is a new challenging machine reading comprehension benchmark with two-grained answers, which are a long answer (typically a paragraph) and a short answer (one or more entities inside the long answer).
no code implementations • ACL 2020 • Fei Yuan, Linjun Shou, Xuanyu Bai, Ming Gong, Yaobo Liang, Nan Duan, Yan Fu, Daxin Jiang
Multilingual pre-trained models could leverage the training data from a rich source language (such as English) to improve performance on low resource languages.
2 code implementations • 3 Apr 2020 • Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang, Rahul Agrawal, Edward Cui, Sining Wei, Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu, Shuguang Liu, Fan Yang, Daniel Campos, Rangan Majumder, Ming Zhou
In this paper, we introduce XGLUE, a new benchmark dataset that can be used to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora and evaluate their performance across a diverse set of cross-lingual tasks.
no code implementations • IJCNLP 2019 • Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang, Ming Zhou
On XNLI, 1. 8% averaged accuracy improvement (on 15 languages) is obtained.
Cross-Lingual Natural Language Inference
Cross-Lingual Question Answering
+1
no code implementations • ACL 2019 • Botian Shi, Lei Ji, Yaobo Liang, Nan Duan, Peng Chen, Zhendong Niu, Ming Zhou
Understanding narrated instructional videos is important for both research and real-world web applications.