no code implementations • 23 May 2023 • Yuanfeng Ji, Yatao Bian, Guoji Fu, Peilin Zhao, Ping Luo
Firstly, SyNDock formulates multimeric protein docking as a problem of learning global transformations to holistically depict the placement of chain units of a complex, enabling a learning-centric solution.
no code implementations • 22 Apr 2023 • Yongqiang Chen, Wei Huang, Kaiwen Zhou, Yatao Bian, Bo Han, James Cheng
A common explanation for the failure of out-of-distribution (OOD) generalization is that the model trained with empirical risk minimization (ERM) learns spurious features instead of the desired invariant features.
no code implementations • 9 Apr 2023 • Zongbo Han, Zhipeng Liang, Fan Yang, Liu Liu, Lanqing Li, Yatao Bian, Peilin Zhao, QinGhua Hu, Bingzhe Wu, Changqing Zhang, Jianhua Yao
Subpopulation shift exists widely in many real-world applications, which refers to the training and test distributions that contain the same subpopulation groups but with different subpopulation proportions.
2 code implementations • 23 Mar 2023 • Huan Ma, Changqing Zhang, Yatao Bian, Lemao Liu, Zhirui Zhang, Peilin Zhao, Shu Zhang, Huazhu Fu, QinGhua Hu, Bingzhe Wu
Large language models have demonstrated surprising ability to perform in-context learning, i. e., these models can be directly applied to solve numerous downstream tasks by conditioning on a prompt constructed by a few input-output examples.
1 code implementation • 15 Feb 2023 • Ziqiao Zhang, Bangyi Zhao, Ailin Xie, Yatao Bian, Shuigeng Zhou
In this paper, we first introduce ACNet, a large-scale dataset for AC prediction.
1 code implementation • 8 Oct 2022 • Lu Zhang, Yang Wang, Jiaogen Zhou, Chenbo Zhang, Yinglu Zhang, Jihong Guan, Yatao Bian, Shuigeng Zhou
In this paper, we propose and solve a new problem called hierarchical few-shot object detection (Hi-FSOD), which aims to detect objects with hierarchical categories in the FSOD paradigm.
1 code implementation • 19 Sep 2022 • Zongbo Han, Zhipeng Liang, Fan Yang, Liu Liu, Lanqing Li, Yatao Bian, Peilin Zhao, Bingzhe Wu, Changqing Zhang, Jianhua Yao
Importance reweighting is a normal way to handle the subpopulation shift issue by imposing constant or adaptive sampling weights on each sample in the training dataset.
1 code implementation • 16 Sep 2022 • Lanqing Li, Liang Zeng, Ziqi Gao, Shen Yuan, Yatao Bian, Bingzhe Wu, Hengtong Zhang, Yang Yu, Chan Lu, Zhipeng Zhou, Hongteng Xu, Jia Li, Peilin Zhao, Pheng-Ann Heng
The last decade has witnessed a prosperous development of computational methods and dataset curation for AI-aided drug discovery (AIDD).
no code implementations • 21 Aug 2022 • Ziqiao Zhang, Yatao Bian, Ailin Xie, Pengju Han, Long-Kai Huang, Shuigeng Zhou
Self-supervised pre-training is gaining increasingly more popularity in AI-aided drug discovery, leading to more and more pre-trained models with the promise that they can extract better feature representations for molecules.
no code implementations • 28 Jul 2022 • Xi Leng, Xiaoying Tang, Yatao Bian
Machine learning algorithms minimizing the average training loss usually suffer from poor generalization performance due to the greedy exploitation of correlations among the training data, which are not stable under distributional shifts.
2 code implementations • 15 Jun 2022 • Yongqiang Chen, Kaiwen Zhou, Yatao Bian, Binghui Xie, Bingzhe Wu, Yonggang Zhang, Kaili Ma, Han Yang, Peilin Zhao, Bo Han, James Cheng
Recently, there has been a growing surge of interest in enabling machine learning systems to generalize well to Out-of-Distribution (OOD) data.
no code implementations • 20 May 2022 • Bingzhe Wu, Jintang Li, Junchi Yu, Yatao Bian, Hengtong Zhang, Chaochao Chen, Chengbin Hou, Guoji Fu, Liang Chen, Tingyang Xu, Yu Rong, Xiaolin Zheng, Junzhou Huang, Ran He, Baoyuan Wu, Guangyu Sun, Peng Cui, Zibin Zheng, Zhe Liu, Peilin Zhao
Deep graph learning has achieved remarkable progresses in both business and scientific areas ranging from finance and e-commerce, to drug and advanced material discovery.
no code implementations • 16 Apr 2022 • Bingzhe Wu, Zhipeng Liang, Yuxuan Han, Yatao Bian, Peilin Zhao, Junzhou Huang
In this paper, we propose a general framework to solve the above two challenges simultaneously.
no code implementations • 31 Mar 2022 • Jiying Zhang, Fuyang Li, Xi Xiao, Tingyang Xu, Yu Rong, Junzhou Huang, Yatao Bian
As a powerful tool for modeling complex relationships, hypergraphs are gaining popularity from the graph learning community.
1 code implementation • 20 Mar 2022 • Jiying Zhang, Xi Xiao, Long-Kai Huang, Yu Rong, Yatao Bian
In this paper, we present a novel optimal transport-based fine-tuning framework called GTOT-Tuning, namely, Graph Topology induced Optimal Transport fine-Tuning, for GNN style backbones.
Ranked #1 on
Graph Classification
on BBBP
1 code implementation • 3 Mar 2022 • Zijing Ou, Tingyang Xu, Qinliang Su, Yingzhen Li, Peilin Zhao, Yatao Bian
Learning neural set functions becomes increasingly more important in many applications like product recommendation and compound selection in AI-aided drug discovery.
1 code implementation • 17 Feb 2022 • Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao, Junzhou Huang, Sophia Ananiadou, Yu Rong
In this survey, we provide a comprehensive review of various Graph Transformer models from the architectural design perspective.
no code implementations • 15 Feb 2022 • Jintang Li, Bingzhe Wu, Chengbin Hou, Guoji Fu, Yatao Bian, Liang Chen, Junzhou Huang, Zibin Zheng
Despite the progress, applying DGL to real-world applications faces a series of reliability threats including inherent noise, distribution shift, and adversarial attacks.
2 code implementations • 11 Feb 2022 • Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han, James Cheng
Despite recent success in using the invariance principle for out-of-distribution (OOD) generalization on Euclidean data (e. g., images), studies on graph data are still limited.
no code implementations • 25 Jan 2022 • Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Peilin Zhao, Junzhou Huang, Da Luo, Kangyi Lin, Sophia Ananiadou
Although these methods have made great progress, they are often limited by the recommender system's direct exposure and inactive interactions, and thus fail to mine all potential user interests.
1 code implementation • 24 Jan 2022 • Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing Li, Jie Ren, Ding Xue, Houtim Lai, Shaoyong Xu, Jing Feng, Wei Liu, Ping Luo, Shuigeng Zhou, Junzhou Huang, Peilin Zhao, Yatao Bian
AI-aided drug discovery (AIDD) is gaining increasing popularity due to its promise of making the search for new pharmaceuticals quicker, cheaper and more efficient.
1 code implementation • NeurIPS 2021 • Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou Huang, Wenwu Zhu
Graph Convolutional Networks (GCNs) are promising deep learning approaches in learning representations for graph-structured data.
1 code implementation • ICLR 2022 • Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi Jaakkola, Andreas Krause
Protein complex formation is a central problem in biology, being involved in most of the cell's processes, and essential for applications, e. g. drug design or protein engineering.
1 code implementation • 14 Nov 2021 • Guoji Fu, Peilin Zhao, Yatao Bian
Graph neural networks (GNNs) have demonstrated superior performance for semi-supervised node classification on graphs, as a result of their ability to exploit node features and topological information simultaneously.
no code implementations • ICLR 2022 • Yatao Bian, Yu Rong, Tingyang Xu, Jiaxiang Wu, Andreas Krause, Junzhou Huang
By running fixed point iteration for multiple steps, we achieve a trajectory of the valuations, among which we define the valuation with the best conceivable decoupling error as the Variational Index.
no code implementations • 20 Mar 2021 • Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, Ran He
The emergence of Graph Convolutional Network (GCN) has greatly boosted the progress of graph learning.
no code implementations • 17 Mar 2021 • Yuzhao Chen, Yatao Bian, Jiying Zhang, Xi Xiao, Tingyang Xu, Yu Rong, Junzhou Huang
Though the multiscale graph learning techniques have enabled advanced feature extraction frameworks, the classic ensemble strategy may show inferior performance while encountering the high homogeneity of the learnt representation, which is caused by the nature of existing graph pooling methods.
no code implementations • 4 Nov 2020 • Yuzhao Chen, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, Junzhou Huang
Furthermore, the inefficient training process of teacher-student knowledge distillation also impedes its applications in GNN models.
1 code implementation • ICLR 2021 • Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, Ran He
In this paper, we propose a framework of Graph Information Bottleneck (GIB) for the subgraph recognition problem in deep graph learning.
no code implementations • 24 Jun 2020 • Yatao Bian, Joachim M. Buhmann, Andreas Krause
We start by a thorough characterization of the class of continuous submodular functions, and show that continuous submodularity is equivalent to a weak version of the diminishing returns (DR) property.
3 code implementations • NeurIPS 2020 • Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, Junzhou Huang
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
Ranked #4 on
Molecular Property Prediction
on QM7
no code implementations • ICML 2020 • Aytunc Sahin, Yatao Bian, Joachim M. Buhmann, Andreas Krause
Submodular functions have been studied extensively in machine learning and data mining.
no code implementations • 17 May 2020 • Hehuan Ma, Yatao Bian, Yu Rong, Wenbing Huang, Tingyang Xu, Weiyang Xie, Geyan Ye, Junzhou Huang
Guided by this observation, we present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture to enable more accurate predictions of molecular properties.
no code implementations • 4 Oct 2016 • Benjamin Fischer, Nico Gorbach, Stefan Bauer, Yatao Bian, Joachim M. Buhmann
Gaussian processes are powerful, yet analytically tractable models for supervised learning.