no code implementations • 9 Oct 2023 • Yegor Klochkov, Jean-Francois Ton, Ruocheng Guo, Yang Liu, Hang Li
We address the problem of concept removal in deep neural networks, aiming to learn representations that do not encode certain specified concepts (e. g., gender etc.)
1 code implementation • 9 Oct 2023 • Wenlong Chen, Yegor Klochkov, Yang Liu
We consider a binary classification problem under group fairness constraints, which can be one of Demographic Parity (DP), Equalized Opportunity (EOp), or Equalized Odds (EO).
1 code implementation • 10 Aug 2023 • Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov, Muhammad Faaiz Taufiq, Hang Li
However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations.
no code implementations • 28 Dec 2022 • Wolfgang Karl Härdle, Yegor Klochkov, Alla Petukhina, Nikita Zhivotovskiy
Markowitz mean-variance portfolios with sample mean and covariance as input parameters feature numerous issues in practice.
no code implementations • NeurIPS 2021 • Yegor Klochkov, Nikita Zhivotovskiy
The sharpest known high probability generalization bounds for uniformly stable algorithms (Feldman, Vondr\'{a}k, 2018, 2019), (Bousquet, Klochkov, Zhivotovskiy, 2020) contain a generally inevitable sampling error term of order $\Theta(1/\sqrt{n})$.
no code implementations • 6 Feb 2020 • Yegor Klochkov, Alexey Kroshnin, Nikita Zhivotovskiy
We consider the robust algorithms for the $k$-means clustering problem where a quantizer is constructed based on $N$ independent observations.
no code implementations • 17 Oct 2019 • Olivier Bousquet, Yegor Klochkov, Nikita Zhivotovskiy
In a series of recent breakthrough papers by Feldman and Vondrak (2018, 2019), it was shown that the best known high probability upper bounds for uniformly stable learning algorithms due to Bousquet and Elisseef (2002) are sub-optimal in some natural regimes.