Search Results for author: Yejin Choi

Found 188 papers, 88 papers with code

Exposing the Limits of Video-Text Models through Contrast Sets

1 code implementation NAACL 2022 Jae Sung Park, Sheng Shen, Ali Farhadi, Trevor Darrell, Yejin Choi, Anna Rohrbach

We test the robustness of recent methods on the proposed automatic contrast sets, and compare them to additionally collected human-generated counterparts, to assess their effectiveness.

Language Modelling Multiple-choice +2

Reframing Instructional Prompts to GPTk’s Language

no code implementations Findings (ACL) 2022 Daniel Khashabi, Chitta Baral, Yejin Choi, Hannaneh Hajishirzi

Our experiments compare the zero-shot and few-shot performance of LMs prompted with reframed instructions on 12 NLP tasks across 6 categories.

Misinfo Reaction Frames: Reasoning about Readers’ Reactions to News Headlines

1 code implementation ACL 2022 Saadia Gabriel, Skyler Hallinan, Maarten Sap, Pemi Nguyen, Franziska Roesner, Eunsol Choi, Yejin Choi

Even to a simple and short news headline, readers react in a multitude of ways: cognitively (e. g. inferring the writer’s intent), emotionally (e. g. feeling distrust), and behaviorally (e. g. sharing the news with their friends).

Misinformation

proScript: Partially Ordered Scripts Generation

no code implementations Findings (EMNLP) 2021 Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, Yejin Choi

Scripts – prototypical event sequences describing everyday activities – have been shown to help understand narratives by providing expectations, resolving ambiguity, and filling in unstated information.

Text Generation

Do Embodied Agents Dream of Pixelated Sheep?: Embodied Decision Making using Language Guided World Modelling

no code implementations28 Jan 2023 Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer Singh, Roy Fox

Reinforcement learning (RL) agents typically learn tabula rasa, without prior knowledge of the world, which makes learning complex tasks with sparse rewards difficult.

Decision Making

MAUVE Scores for Generative Models: Theory and Practice

no code implementations30 Dec 2022 Krishna Pillutla, Lang Liu, John Thickstun, Sean Welleck, Swabha Swayamdipta, Rowan Zellers, Sewoong Oh, Yejin Choi, Zaid Harchaoui

We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images.

Quantization

Detoxifying Text with MaRCo: Controllable Revision with Experts and Anti-Experts

no code implementations20 Dec 2022 Skyler Hallinan, Alisa Liu, Yejin Choi, Maarten Sap

Text detoxification has the potential to mitigate the harms of toxicity by rephrasing text to remove offensive meaning, but subtle toxicity remains challenging to tackle.

An AI Dungeon Master's Guide: Learning to Converse and Guide with Intents and Theory-of-Mind in Dungeons and Dragons

no code implementations20 Dec 2022 Pei Zhou, Andrew Zhu, Jennifer Hu, Jay Pujara, Xiang Ren, Chris Callison-Burch, Yejin Choi, Prithviraj Ammanabrolu

We propose a novel task, G4C (Goal-driven Guidance Generation in Grounded Communication), for studying goal-driven and grounded natural language interactions.

I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation

no code implementations19 Dec 2022 Chandra Bhagavatula, Jena D. Hwang, Doug Downey, Ronan Le Bras, Ximing Lu, Keisuke Sakaguchi, Swabha Swayamdipta, Peter West, Yejin Choi

The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition.

Imitation Learning Knowledge Distillation

Statistical and Computational Guarantees for Influence Diagnostics

1 code implementation8 Dec 2022 Jillian Fisher, Lang Liu, Krishna Pillutla, Yejin Choi, Zaid Harchaoui

Influence diagnostics such as influence functions and approximate maximum influence perturbations are popular in machine learning and in AI domain applications.

NaturalAdversaries: Can Naturalistic Adversaries Be as Effective as Artificial Adversaries?

no code implementations8 Nov 2022 Saadia Gabriel, Hamid Palangi, Yejin Choi

While a substantial body of prior work has explored adversarial example generation for natural language understanding tasks, these examples are often unrealistic and diverge from the real-world data distributions.

Natural Language Understanding text-classification +1

Generating Sequences by Learning to Self-Correct

no code implementations31 Oct 2022 Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, Yejin Choi

Sequence generation applications require satisfying semantic constraints, such as ensuring that programs are correct, using certain keywords, or avoiding undesirable content.

Language Modelling Program Synthesis

Referee: Reference-Free Sentence Summarization with Sharper Controllability through Symbolic Knowledge Distillation

no code implementations25 Oct 2022 Melanie Sclar, Peter West, Sachin Kumar, Yulia Tsvetkov, Yejin Choi

Moreover, we uniquely propose iterative distillation of knowledge, where student models from the previous iteration of distillation serve as teacher models in the next iteration.

Knowledge Distillation Sentence Summarization

Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs

no code implementations24 Oct 2022 Maarten Sap, Ronan LeBras, Daniel Fried, Yejin Choi

We show that one of today's largest language models (GPT-3; Brown et al., 2020) lacks this kind of social intelligence out-of-the box, using two tasks: SocialIQa (Sap et al., 2019), which measures models' ability to understand intents and reactions of participants of social interactions, and ToMi (Le et al., 2019), which measures whether models can infer mental states and realities of participants of situations.

Navigate

NeuroCounterfactuals: Beyond Minimal-Edit Counterfactuals for Richer Data Augmentation

1 code implementation22 Oct 2022 Phillip Howard, Gadi Singer, Vasudev Lal, Yejin Choi, Swabha Swayamdipta

While counterfactual data augmentation offers a promising step towards robust generalization in natural language processing, producing a set of counterfactuals that offer valuable inductive bias for models remains a challenge.

Data Augmentation Inductive Bias +2

REV: Information-Theoretic Evaluation of Free-Text Rationales

no code implementations10 Oct 2022 Hanjie Chen, Faeze Brahman, Xiang Ren, Yangfeng Ji, Yejin Choi, Swabha Swayamdipta

While existing metrics have mostly focused on measuring the direct association between the rationale and a given label, we argue that an ideal metric should also be able to focus on the new information uniquely provided in the rationale that is otherwise not provided in the input or the label.

Association

Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering

1 code implementation6 Oct 2022 Jiacheng Liu, Skyler Hallinan, Ximing Lu, Pengfei He, Sean Welleck, Hannaneh Hajishirzi, Yejin Choi

Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.

Question Answering reinforcement Learning

RealTime QA: What's the Answer Right Now?

1 code implementation27 Jul 2022 Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir Radev, Noah A. Smith, Yejin Choi, Kentaro Inui

We introduce RealTime QA, a dynamic question answering (QA) platform that announces questions and evaluates systems on a regular basis (weekly in this version).

Information Retrieval Pretrained Language Models +2

Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

1 code implementation9 Jun 2022 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramón Risco Delgado, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Timothy Telleen-Lawton, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, ZiRui Wang, Ziyi Wu

BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models.

Common Sense Reasoning Memorization

NaturalProver: Grounded Mathematical Proof Generation with Language Models

1 code implementation25 May 2022 Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, Yejin Choi

Theorem proving in natural mathematical language - the mixture of symbolic and natural language used by humans - plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence.

Automated Theorem Proving Language Modelling

ProsocialDialog: A Prosocial Backbone for Conversational Agents

1 code implementation25 May 2022 Hyunwoo Kim, Youngjae Yu, Liwei Jiang, Ximing Lu, Daniel Khashabi, Gunhee Kim, Yejin Choi, Maarten Sap

With this dataset, we introduce a dialogue safety detection module, Canary, capable of generating RoTs given conversational context, and a socially-informed dialogue agent, Prost.

Dialogue Generation Dialogue Safety Prediction +2

Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations

no code implementations24 May 2022 JaeHun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras, Yejin Choi

Despite their impressive capabilities, large pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this.

Penguins Don't Fly: Reasoning about Generics through Instantiations and Exceptions

no code implementations23 May 2022 Emily Allaway, Jena D. Hwang, Chandra Bhagavatula, Kathleen McKeown, Doug Downey, Yejin Choi

Generics express generalizations about the world (e. g., birds can fly) that are not universally true (e. g., newborn birds and penguins cannot fly).

Natural Language Inference

Twist Decoding: Diverse Generators Guide Each Other

1 code implementation19 May 2022 Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Hao Peng, Ximing Lu, Dragomir Radev, Yejin Choi, Noah A. Smith

Our extensive evaluations on machine translation and scientific paper summarization demonstrate that Twist decoding substantially outperforms each model decoded in isolation over various scenarios, including cases where domain-specific and general-purpose models are both available.

Machine Translation Text Generation +1

Aligning to Social Norms and Values in Interactive Narratives

no code implementations NAACL 2022 Prithviraj Ammanabrolu, Liwei Jiang, Maarten Sap, Hannaneh Hajishirzi, Yejin Choi

We focus on creating agents that act in alignment with socially beneficial norms and values in interactive narratives or text-based games -- environments wherein an agent perceives and interacts with a world through natural language.

text-based games

Probing Factually Grounded Content Transfer with Factual Ablation

no code implementations Findings (ACL) 2022 Peter West, Chris Quirk, Michel Galley, Yejin Choi

Particularly, this domain allows us to introduce the notion of factual ablation for automatically measuring factual consistency: this captures the intuition that the model should be less likely to produce an output given a less relevant grounding document.

Faking Fake News for Real Fake News Detection: Propaganda-loaded Training Data Generation

no code implementations10 Mar 2022 Kung-Hsiang Huang, Kathleen McKeown, Preslav Nakov, Yejin Choi, Heng Ji

While there has been a lot of research and many recent advances in neural fake news detection, defending against human-written disinformation remains underexplored.

Fake News Detection Natural Language Inference +1

COLD Decoding: Energy-based Constrained Text Generation with Langevin Dynamics

1 code implementation23 Feb 2022 Lianhui Qin, Sean Welleck, Daniel Khashabi, Yejin Choi

Many applications of text generation require incorporating different constraints to control the semantics or style of generated text.

Text Generation

The Abduction of Sherlock Holmes: A Dataset for Visual Abductive Reasoning

no code implementations10 Feb 2022 Jack Hessel, Jena D. Hwang, Jae Sung Park, Rowan Zellers, Chandra Bhagavatula, Anna Rohrbach, Kate Saenko, Yejin Choi

We present Sherlock, an annotated corpus of 103K images for testing machine capacity for abductive reasoning beyond literal image contents.

Visual Reasoning

WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation

1 code implementation16 Jan 2022 Alisa Liu, Swabha Swayamdipta, Noah A. Smith, Yejin Choi

Starting with an existing dataset, MultiNLI for natural language inference (NLI), our approach uses dataset cartography to automatically identify examples that demonstrate challenging reasoning patterns, and instructs GPT-3 to compose new examples with similar patterns.

Natural Language Inference Text Generation

CommonsenseQA 2.0: Exposing the Limits of AI through Gamification

no code implementations14 Jan 2022 Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bhagavatula, Yoav Goldberg, Yejin Choi, Jonathan Berant

Constructing benchmarks that test the abilities of modern natural language understanding models is difficult - pre-trained language models exploit artifacts in benchmarks to achieve human parity, but still fail on adversarial examples and make errors that demonstrate a lack of common sense.

Common Sense Reasoning Natural Language Understanding

Imagined versus Remembered Stories: Quantifying Differences in Narrative Flow

no code implementations7 Jan 2022 Maarten Sap, Anna Jafarpour, Yejin Choi, Noah A. Smith, James W. Pennebaker, Eric Horvitz

We quantify the differences between autobiographical and imagined stories by introducing sequentiality, a measure of narrative flow of events, drawing probabilistic inferences from a cutting-edge large language model (GPT-3).

Language Modelling Text Generation

Connecting the Dots between Audio and Text without Parallel Data through Visual Knowledge Transfer

1 code implementation NAACL 2022 Yanpeng Zhao, Jack Hessel, Youngjae Yu, Ximing Lu, Rowan Zellers, Yejin Choi

In a difficult zero-shot setting with no paired audio-text data, our model demonstrates state-of-the-art zero-shot performance on the ESC50 and US8K audio classification tasks, and even surpasses the supervised state of the art for Clotho caption retrieval (with audio queries) by 2. 2\% R@1.

Audio Classification Audio Tagging +2

Reframing Human-AI Collaboration for Generating Free-Text Explanations

1 code implementation NAACL 2022 Sarah Wiegreffe, Jack Hessel, Swabha Swayamdipta, Mark Riedl, Yejin Choi

We create a pipeline that combines GPT-3 with a supervised filter that incorporates binary acceptability judgments from humans in the loop.

NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics

1 code implementation NAACL 2022 Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, Yejin Choi

To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction.

Machine Translation Table-to-Text Generation

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

2 code implementations NAACL 2022 Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Lavinia Dunagan, Jacob Morrison, Alexander R. Fabbri, Yejin Choi, Noah A. Smith

We therefore propose a generalization of leaderboards, bidimensional leaderboards (Billboards), that simultaneously tracks progress in language generation models and metrics for their evaluation.

Image Captioning Machine Translation +1

Annotators with Attitudes: How Annotator Beliefs And Identities Bias Toxic Language Detection

no code implementations NAACL 2022 Maarten Sap, Swabha Swayamdipta, Laura Vianna, Xuhui Zhou, Yejin Choi, Noah A. Smith

The perceived toxicity of language can vary based on someone's identity and beliefs, but this variation is often ignored when collecting toxic language datasets, resulting in dataset and model biases.

Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information

1 code implementation16 Oct 2021 Kawin Ethayarajh, Yejin Choi, Swabha Swayamdipta

However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model.

Generated Knowledge Prompting for Commonsense Reasoning

1 code implementation ACL 2022 Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi, Hannaneh Hajishirzi

It remains an open question whether incorporating external knowledge benefits commonsense reasoning while maintaining the flexibility of pretrained sequence models.

Language Modelling

Symbolic Brittleness in Sequence Models: on Systematic Generalization in Symbolic Mathematics

1 code implementation28 Sep 2021 Sean Welleck, Peter West, Jize Cao, Yejin Choi

Neural sequence models trained with maximum likelihood estimation have led to breakthroughs in many tasks, where success is defined by the gap between training and test performance.

Out-of-Distribution Generalization Systematic Generalization

Reframing Instructional Prompts to GPTk's Language

no code implementations16 Sep 2021 Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, Hannaneh Hajishirzi

Our experiments compare the zero-shot and few-shot performance of LMs prompted with reframed instructions on 12 NLP tasks across 6 categories.

Few-Shot Learning Question Generation +1

Is GPT-3 Text Indistinguishable from Human Text? Scarecrow: A Framework for Scrutinizing Machine Text

no code implementations ACL 2022 Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski, Noah A. Smith, Yejin Choi

To support the broad range of real machine errors that can be identified by laypeople, the ten error categories of Scarecrow -- such as redundancy, commonsense errors, and incoherence -- are identified through several rounds of crowd annotation experiments without a predefined ontology.

Text Generation

TIMEDIAL: Temporal Commonsense Reasoning in Dialog

1 code implementation ACL 2021 Lianhui Qin, Aditya Gupta, Shyam Upadhyay, Luheng He, Yejin Choi, Manaal Faruqui

In this paper, we present the first study to investigate pre-trained LMs for their temporal reasoning capabilities in dialogs by introducing a new task and a crowd-sourced English challenge set, TIMEDIAL.

Multiple-choice Timedial

MERLOT: Multimodal Neural Script Knowledge Models

1 code implementation NeurIPS 2021 Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, Yejin Choi

As humans, we understand events in the visual world contextually, performing multimodal reasoning across time to make inferences about the past, present, and future.

Visual Commonsense Reasoning

``I'm Not Mad'': Commonsense Implications of Negation and Contradiction

no code implementations NAACL 2021 Liwei Jiang, Antoine Bosselut, Chandra Bhagavatula, Yejin Choi

In this paper, we present the first comprehensive study focusing on commonsense implications of negated statements and contradictions.

Natural Language Inference

PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World

no code implementations ACL 2021 Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh Mottaghi, Aniruddha Kembhavi, Ali Farhadi, Yejin Choi

We propose PIGLeT: a model that learns physical commonsense knowledge through interaction, and then uses this knowledge to ground language.

Language Modelling

Surface Form Competition: Why the Highest Probability Answer Isn't Always Right

1 code implementation16 Apr 2021 Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, Luke Zettlemoyer

Large language models have shown promising results in zero-shot settings (Brown et al., 2020; Radford et al., 2019).

Multiple-choice

proScript: Partially Ordered Scripts Generation via Pre-trained Language Models

no code implementations16 Apr 2021 Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, Yejin Choi

Scripts - standardized event sequences describing typical everyday activities - have been shown to help understand narratives by providing expectations, resolving ambiguity, and filling in unstated information.

Text Generation

"I'm Not Mad": Commonsense Implications of Negation and Contradiction

no code implementations13 Apr 2021 Liwei Jiang, Antoine Bosselut, Chandra Bhagavatula, Yejin Choi

In this paper, we present the first comprehensive study focusing on commonsense implications of negated statements and contradictions.

Natural Language Inference

NaturalProofs: Mathematical Theorem Proving in Natural Language

1 code implementation24 Mar 2021 Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, Kyunghyun Cho

Understanding and creating mathematics using natural mathematical language - the mixture of symbolic and natural language used by humans - is a challenging and important problem for driving progress in machine learning.

Automated Theorem Proving Domain Generalization +2

UNICORN on RAINBOW: A Universal Commonsense Reasoning Model on a New Multitask Benchmark

1 code implementation24 Mar 2021 Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

First, we propose a new multitask benchmark, RAINBOW, to promote research on commonsense models that generalize well over multiple tasks and datasets.

HellaSwag Knowledge Graphs +4

Contrastive Explanations for Model Interpretability

1 code implementation EMNLP 2021 Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel, Yanai Elazar, Yejin Choi, Yoav Goldberg

Our method is based on projecting model representation to a latent space that captures only the features that are useful (to the model) to differentiate two potential decisions.

text-classification Text Classification

MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers

3 code implementations NeurIPS 2021 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi, Zaid Harchaoui

As major progress is made in open-ended text generation, measuring how close machine-generated text is to human language remains a critical open problem.

Text Generation

Challenges in Automated Debiasing for Toxic Language Detection

2 code implementations EACL 2021 Xuhui Zhou, Maarten Sap, Swabha Swayamdipta, Noah A. Smith, Yejin Choi

Overall, our findings show that debiasing a model trained on biased toxic language data is not as effective as simply relabeling the data to remove existing biases.

Fairness text-classification +1

On-the-Fly Attention Modulation for Neural Generation

no code implementations Findings (ACL) 2021 Yue Dong, Chandra Bhagavatula, Ximing Lu, Jena D. Hwang, Antoine Bosselut, Jackie Chi Kit Cheung, Yejin Choi

Despite considerable advancements with deep neural language models (LMs), neural text generation still suffers from degeneration: the generated text is repetitive, generic, self-contradictory, and often lacks commonsense.

Language Modelling Text Generation

VinVL: Revisiting Visual Representations in Vision-Language Models

6 code implementations CVPR 2021 Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, Jianfeng Gao

In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model \oscar \cite{li2020oscar}, and utilize an improved approach \short\ to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks.

Image Captioning object-detection +1

Analyzing Commonsense Emergence in Few-shot Knowledge Models

1 code implementation AKBC 2021 Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, Antoine Bosselut

Our results show that commonsense knowledge models can rapidly adapt from limited examples, indicating that KG fine-tuning serves to learn an interface to encoded knowledge learned during pretraining.

Pretrained Language Models

Learning to Rationalize for Nonmonotonic Reasoning with Distant Supervision

no code implementations14 Dec 2020 Faeze Brahman, Vered Shwartz, Rachel Rudinger, Yejin Choi

In this paper, we investigate the extent to which neural models can reason about natural language rationales that explain model predictions, relying only on distant supervision with no additional annotation cost for human-written rationales.

Do Neural Language Models Overcome Reporting Bias?

1 code implementation COLING 2020 Vered Shwartz, Yejin Choi

Mining commonsense knowledge from corpora suffers from reporting bias, over-representing the rare at the expense of the trivial (Gordon and Van Durme, 2013).

Social Chemistry 101: Learning to Reason about Social and Moral Norms

1 code implementation EMNLP 2020 Maxwell Forbes, Jena D. Hwang, Vered Shwartz, Maarten Sap, Yejin Choi

We present Social Chemistry, a new conceptual formalism to study people's everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language.

PowerTransformer: Unsupervised Controllable Revision for Biased Language Correction

no code implementations EMNLP 2020 Xinyao Ma, Maarten Sap, Hannah Rashkin, Yejin Choi

Unconscious biases continue to be prevalent in modern text and media, calling for algorithms that can assist writers with bias correction.

Pretrained Language Models

GO FIGURE: A Meta Evaluation of Factuality in Summarization

no code implementations Findings (ACL) 2021 Saadia Gabriel, Asli Celikyilmaz, Rahul Jha, Yejin Choi, Jianfeng Gao

While neural language models can generate text with remarkable fluency and coherence, controlling for factual correctness in generation remains an open research question.

Common Sense Reasoning Document Summarization +1

NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints

no code implementations NAACL 2021 Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples.

Conditional Text Generation Pretrained Language Models

Reflective Decoding: Beyond Unidirectional Generation with Off-the-Shelf Language Models

no code implementations ACL 2021 Peter West, Ximing Lu, Ari Holtzman, Chandra Bhagavatula, Jena Hwang, Yejin Choi

In this paper, we present Reflective Decoding, a novel unsupervised algorithm that allows for direct application of unidirectional LMs to non-sequential tasks.

Conditional Text Generation Text Infilling

Natural Language Rationales with Full-Stack Visual Reasoning: From Pixels to Semantic Frames to Commonsense Graphs

1 code implementation Findings of the Association for Computational Linguistics 2020 Ana Marasović, Chandra Bhagavatula, Jae Sung Park, Ronan Le Bras, Noah A. Smith, Yejin Choi

Natural language rationales could provide intuitive, higher-level explanations that are easily understandable by humans, complementing the more broadly studied lower-level explanations based on gradients or attention weights.

Language Modelling Natural Language Inference +5

Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning

1 code implementation EMNLP 2020 Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena Hwang, Ronan Le Bras, Antoine Bosselut, Yejin Choi

Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future.

Text Infilling

COMET-ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

3 code implementations12 Oct 2020 Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, Yejin Choi

Next, we show that ATOMIC 2020 is better suited for training knowledge models that can generate accurate, representative knowledge for new, unseen entities and events.

Knowledge Graphs Natural Language Understanding +1

Paragraph-level Commonsense Transformers with Recurrent Memory

1 code implementation4 Oct 2020 Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz, Ronan Le Bras, Maxwell Forbes, Yejin Choi

Human understanding of narrative texts requires making commonsense inferences beyond what is stated explicitly in the text.

RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models

1 code implementation Findings of the Association for Computational Linguistics 2020 Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, Noah A. Smith

We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.

Text Generation

Scruples: A Corpus of Community Ethical Judgments on 32,000 Real-Life Anecdotes

1 code implementation20 Aug 2020 Nicholas Lourie, Ronan Le Bras, Yejin Choi

As AI systems become an increasing part of people's everyday lives, it becomes ever more important that they understand people's ethical norms.

Ethics

Commonsense Reasoning for Natural Language Processing

no code implementations ACL 2020 Maarten Sap, Vered Shwartz, Antoine Bosselut, Yejin Choi, Dan Roth

We organize this tutorial to provide researchers with the critical foundations and recent advances in commonsense representation and reasoning, in the hopes of casting a brighter light on this promising area of future research.

Navigate Pretrained Language Models

PlotMachines: Outline-Conditioned Generation with Dynamic Plot State Tracking

2 code implementations EMNLP 2020 Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, Jianfeng Gao

We propose the task of outline-conditioned story generation: given an outline as a set of phrases that describe key characters and events to appear in a story, the task is to generate a coherent narrative that is consistent with the provided outline.

Story Generation

VisualCOMET: Reasoning about the Dynamic Context of a Still Image

no code implementations ECCV 2020 Jae Sung Park, Chandra Bhagavatula, Roozbeh Mottaghi, Ali Farhadi, Yejin Choi

In addition, we provide person-grounding (i. e., co-reference links) between people appearing in the image and people mentioned in the textual commonsense descriptions, allowing for tighter integration between images and text.

Visual Commonsense Reasoning

Procedural Reading Comprehension with Attribute-Aware Context Flow

no code implementations AKBC 2020 Aida Amini, Antoine Bosselut, Bhavana Dalvi Mishra, Yejin Choi, Hannaneh Hajishirzi

Procedural texts often describe processes (e. g., photosynthesis and cooking) that happen over entities (e. g., light, food).

Reading Comprehension

Multi-View Learning for Vision-and-Language Navigation

no code implementations2 Mar 2020 Qiaolin Xia, Xiujun Li, Chunyuan Li, Yonatan Bisk, Zhifang Sui, Jianfeng Gao, Yejin Choi, Noah A. Smith

Learning to navigate in a visual environment following natural language instructions is a challenging task because natural language instructions are highly variable, ambiguous, and under-specified.

MULTI-VIEW LEARNING Navigate +1

Adversarial Filters of Dataset Biases

1 code implementation ICML 2020 Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew E. Peters, Ashish Sabharwal, Yejin Choi

Large neural models have demonstrated human-level performance on language and vision benchmarks, while their performance degrades considerably on adversarial or out-of-distribution samples.

Natural Language Inference

PIQA: Reasoning about Physical Commonsense in Natural Language

2 code implementations26 Nov 2019 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, Yejin Choi

Questions requiring this kind of physical commonsense pose a challenge to today's natural language understanding systems.

Natural Language Understanding Physical Commonsense Reasoning +2

Dynamic Neuro-Symbolic Knowledge Graph Construction for Zero-shot Commonsense Question Answering

no code implementations10 Nov 2019 Antoine Bosselut, Ronan Le Bras, Yejin Choi

Understanding narratives requires reasoning about implicit world knowledge related to the causes, effects, and states of situations described in text.

graph construction Knowledge Graphs +3

Social Bias Frames: Reasoning about Social and Power Implications of Language

no code implementations ACL 2020 Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Jurafsky, Noah A. Smith, Yejin Choi

We introduce Social Bias Frames, a new conceptual formalism that aims to model the pragmatic frames in which people project social biases and stereotypes onto others.

Commonsense Knowledge Base Completion with Structural and Semantic Context

no code implementations7 Oct 2019 Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, Yejin Choi

Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1. 5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency.

Knowledge Base Completion Knowledge Graphs +3

BottleSum: Unsupervised and Self-supervised Sentence Summarization using the Information Bottleneck Principle

no code implementations IJCNLP 2019 Peter West, Ari Holtzman, Jan Buys, Yejin Choi

In this paper, we propose a novel approach to unsupervised sentence summarization by mapping the Information Bottleneck principle to a conditional language modelling objective: given a sentence, our approach seeks a compressed sentence that can best predict the next sentence.

Abstractive Text Summarization Extractive Summarization +4

Counterfactual Story Reasoning and Generation

1 code implementation IJCNLP 2019 Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, Yejin Choi

Counterfactual reasoning requires predicting how alternative events, contrary to what actually happened, might have resulted in different outcomes.

Pretrained Language Models Text Generation

Robust Navigation with Language Pretraining and Stochastic Sampling

1 code implementation IJCNLP 2019 Xiujun Li, Chunyuan Li, Qiaolin Xia, Yonatan Bisk, Asli Celikyilmaz, Jianfeng Gao, Noah Smith, Yejin Choi

Core to the vision-and-language navigation (VLN) challenge is building robust instruction representations and action decoding schemes, which can generalize well to previously unseen instructions and environments.

Pretrained Language Models Vision and Language Navigation

Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning

no code implementations IJCNLP 2019 Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

In this paper, we introduce Cosmos QA, a large-scale dataset of 35, 600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions.

Machine Reading Comprehension Multiple-choice

Do Neural Language Representations Learn Physical Commonsense?

1 code implementation8 Aug 2019 Maxwell Forbes, Ari Holtzman, Yejin Choi

Humans understand language based on the rich background knowledge about how the physical world works, which in turn allows us to reason about the physical world through language.

Natural Language Inference Physical Commonsense Reasoning

WinoGrande: An Adversarial Winograd Schema Challenge at Scale

3 code implementations24 Jul 2019 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations.

Transfer Learning Winogrande

Discourse Understanding and Factual Consistency in Abstractive Summarization

no code implementations EACL 2021 Saadia Gabriel, Antoine Bosselut, Jeff Da, Ari Holtzman, Jan Buys, Kyle Lo, Asli Celikyilmaz, Yejin Choi

We introduce a general framework for abstractive summarization with factual consistency and distinct modeling of the narrative flow in an output summary.

Abstractive Text Summarization

The Risk of Racial Bias in Hate Speech Detection

no code implementations ACL 2019 Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, Noah A. Smith

We investigate how annotators{'} insensitivity to differences in dialect can lead to racial bias in automatic hate speech detection models, potentially amplifying harm against minority populations.

Hate Speech Detection

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction

1 code implementation ACL 2019 Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, Yejin Choi

We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017).

graph construction Knowledge Graphs

Conversing by Reading: Contentful Neural Conversation with On-demand Machine Reading

1 code implementation ACL 2019 Lianhui Qin, Michel Galley, Chris Brockett, Xiaodong Liu, Xiang Gao, Bill Dolan, Yejin Choi, Jianfeng Gao

Although neural conversation models are effective in learning how to produce fluent responses, their primary challenge lies in knowing what to say to make the conversation contentful and non-vacuous.

Informativeness Reading Comprehension +1

Benchmarking Hierarchical Script Knowledge

1 code implementation NAACL 2019 Yonatan Bisk, Jan Buys, Karl Pichotta, Yejin Choi

Understanding procedural language requires reasoning about both hierarchical and temporal relations between events.

Efficient Adaptation of Pretrained Transformers for Abstractive Summarization

2 code implementations1 Jun 2019 Andrew Hoang, Antoine Bosselut, Asli Celikyilmaz, Yejin Choi

Large-scale learning of transformer language models has yielded improvements on a variety of natural language understanding tasks.

Abstractive Text Summarization Natural Language Understanding

MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms

no code implementations NAACL 2019 Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, Hannaneh Hajishirzi

We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models.

Math Word Problem Solving

Defending Against Neural Fake News

4 code implementations NeurIPS 2019 Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, Yejin Choi

We find that best current discriminators can classify neural fake news from real, human-written, news with 73% accuracy, assuming access to a moderate level of training data.

Computer Security Fake News Detection +1

HellaSwag: Can a Machine Really Finish Your Sentence?

2 code implementations ACL 2019 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi

In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset.

HellaSwag Natural Language Inference

The Curious Case of Neural Text Degeneration

15 code implementations ICLR 2020 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, Yejin Choi

Despite considerable advancements with deep neural language models, the enigma of neural text degeneration persists when these models are tested as text generators.

Language Modelling

Tactical Rewind: Self-Correction via Backtracking in Vision-and-Language Navigation

1 code implementation CVPR 2019 Liyiming Ke, Xiujun Li, Yonatan Bisk, Ari Holtzman, Zhe Gan, Jingjing Liu, Jianfeng Gao, Yejin Choi, Siddhartha Srinivasa

We present the Frontier Aware Search with backTracking (FAST) Navigator, a general framework for action decoding, that achieves state-of-the-art results on the Room-to-Room (R2R) Vision-and-Language navigation challenge of Anderson et.

Vision and Language Navigation Vision-Language Navigation

DREAM: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension

1 code implementation1 Feb 2019 Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi, Claire Cardie

DREAM is likely to present significant challenges for existing reading comprehension systems: 84% of answers are non-extractive, 85% of questions require reasoning beyond a single sentence, and 34% of questions also involve commonsense knowledge.

Dialogue Understanding Multiple-choice +1

From Recognition to Cognition: Visual Commonsense Reasoning

4 code implementations CVPR 2019 Rowan Zellers, Yonatan Bisk, Ali Farhadi, Yejin Choi

While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world.

Multiple-choice Multiple Choice Question Answering (MCQA) +1

Early Fusion for Goal Directed Robotic Vision

no code implementations21 Nov 2018 Aaron Walsman, Yonatan Bisk, Saadia Gabriel, Dipendra Misra, Yoav Artzi, Yejin Choi, Dieter Fox

Building perceptual systems for robotics which perform well under tight computational budgets requires novel architectures which rethink the traditional computer vision pipeline.

Imitation Learning Retrieval

ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning

2 code implementations31 Oct 2018 Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi

We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge.

QuAC: Question Answering in Context

no code implementations EMNLP 2018 Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, Luke Zettlemoyer

We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total).

Question Answering Reading Comprehension

Neural Metaphor Detection in Context

1 code implementation EMNLP 2018 Ge Gao, Eunsol Choi, Yejin Choi, Luke Zettlemoyer

We present end-to-end neural models for detecting metaphorical word use in context.

53