Search Results for author: Yen-Yu Lin

Found 54 papers, 27 papers with code

AuraFusion360: Augmented Unseen Region Alignment for Reference-based 360° Unbounded Scene Inpainting

no code implementations7 Feb 2025 Chung-Ho Wu, Yang-Jung Chen, Ying-Huan Chen, Jie-Ying Lee, Bo-Hsu Ke, Chun-Wei Tuan Mu, Yi-Chuan Huang, Chin-Yang Lin, Min-Hung Chen, Yen-Yu Lin, Yu-Lun Liu

Three-dimensional scene inpainting is crucial for applications from virtual reality to architectural visualization, yet existing methods struggle with view consistency and geometric accuracy in 360{\deg} unbounded scenes.

CorrFill: Enhancing Faithfulness in Reference-based Inpainting with Correspondence Guidance in Diffusion Models

no code implementations4 Jan 2025 Kuan-Hung Liu, Cheng-Kun Yang, Min-Hung Chen, Yu-Lun Liu, Yen-Yu Lin

In the task of reference-based image inpainting, an additional reference image is provided to restore a damaged target image to its original state.

Image Inpainting

Ranking-aware adapter for text-driven image ordering with CLIP

1 code implementation9 Dec 2024 Wei-Hsiang Yu, Yen-Yu Lin, Ming-Hsuan Yang, Yi-Hsuan Tsai

Overall, our approach primarily focuses on ranking images with a single instruction, which provides a natural and generalized way of learning from visual differences across images, bypassing the need for extensive text prompts tailored to individual tasks.

Age Estimation Image Quality Assessment +1

TANet: Triplet Attention Network for All-In-One Adverse Weather Image Restoration

1 code implementation10 Oct 2024 Hsing-Hua Wang, Fu-Jen Tsai, Yen-Yu Lin, Chia-Wen Lin

In this paper, we propose a Triplet Attention Network (TANet) to efficiently and effectively address all-in-one adverse weather image restoration.

All Image Restoration +1

Improving Visual Object Tracking through Visual Prompting

1 code implementation27 Sep 2024 Shih-Fang Chen, Jun-Cheng Chen, I-Hong Jhuo, Yen-Yu Lin

PiVOT proposes a prompt generation network with the pre-trained foundation model CLIP to automatically generate and refine visual prompts, enabling the transfer of foundation model knowledge for tracking.

Object +3

Make Graph-based Referring Expression Comprehension Great Again through Expression-guided Dynamic Gating and Regression

no code implementations5 Sep 2024 Jingcheng Ke, Dele Wang, Jun-Cheng Chen, I-Hong Jhuo, Chia-Wen Lin, Yen-Yu Lin

Extensive experimental results on the RefCOCO, RefCOCO+, RefCOCOg, Flickr30K, RefClef, and Ref-reasoning datasets demonstrate the effectiveness of the DGC module and the EGR strategy in consistently boosting the performances of various graph-based REC methods.

Referring Expression Referring Expression Comprehension

Domain-adaptive Video Deblurring via Test-time Blurring

1 code implementation12 Jul 2024 Jin-Ting He, Fu-Jen Tsai, Jia-Hao Wu, Yan-Tsung Peng, Chung-Chi Tsai, Chia-Wen Lin, Yen-Yu Lin

Next, we utilize a blurring model to produce blurred images based on the pseudo-sharp images extracted during testing.

Deblurring Domain Adaptation +1

Image-Text Co-Decomposition for Text-Supervised Semantic Segmentation

1 code implementation CVPR 2024 Ji-Jia Wu, Andy Chia-Hao Chang, Chieh-Yu Chuang, Chun-Pei Chen, Yu-Lun Liu, Min-Hung Chen, Hou-Ning Hu, Yung-Yu Chuang, Yen-Yu Lin

This paper addresses text-supervised semantic segmentation, aiming to learn a model capable of segmenting arbitrary visual concepts within images by using only image-text pairs without dense annotations.

Contrastive Learning Language Modeling +4

ViStripformer: A Token-Efficient Transformer for Versatile Video Restoration

no code implementations22 Dec 2023 Fu-Jen Tsai, Yan-Tsung Peng, Chen-Yu Chang, Chan-Yu Li, Yen-Yu Lin, Chung-Chi Tsai, Chia-Wen Lin

Besides, ViStripformer is an effective and efficient transformer architecture with much lower memory usage than the vanilla transformer.

Deblurring Rain Removal +2

ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation

1 code implementation CVPR 2024 Jia-Hao Wu, Fu-Jen Tsai, Yan-Tsung Peng, Chung-Chi Tsai, Chia-Wen Lin, Yen-Yu Lin

Since continuous motion causes blurred artifacts during image exposure, we aspire to develop a groundbreaking blur augmentation method to generate diverse blurred images by simulating motion trajectories in a continuous space.

Data Augmentation Deblurring +1

PartDistill: 3D Shape Part Segmentation by Vision-Language Model Distillation

1 code implementation CVPR 2024 Ardian Umam, Cheng-Kun Yang, Min-Hung Chen, Jen-Hui Chuang, Yen-Yu Lin

This paper proposes a cross-modal distillation framework, PartDistill, which transfers 2D knowledge from vision-language models (VLMs) to facilitate 3D shape part segmentation.

3D Part Segmentation Language Modeling +2

Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection

1 code implementation NeurIPS 2023 Cheng-Ju Ho, Chen-Hsuan Tai, Yen-Yu Lin, Ming-Hsuan Yang, Yi-Hsuan Tsai

Semi-supervised object detection is crucial for 3D scene understanding, efficiently addressing the limitation of acquiring large-scale 3D bounding box annotations.

3D Object Detection Denoising +5

2D-3D Interlaced Transformer for Point Cloud Segmentation with Scene-Level Supervision

no code implementations ICCV 2023 Cheng-Kun Yang, Min-Hung Chen, Yung-Yu Chuang, Yen-Yu Lin

Considering the high annotation cost of point clouds, effective 2D and 3D feature fusion based on weakly supervised learning is in great demand.

Decoder Point Cloud Segmentation +2

Learning Continuous Exposure Value Representations for Single-Image HDR Reconstruction

1 code implementation ICCV 2023 Su-Kai Chen, Hung-Lin Yen, Yu-Lun Liu, Min-Hung Chen, Hou-Ning Hu, Wen-Hsiao Peng, Yen-Yu Lin

To address this, we propose the continuous exposure value representation (CEVR), which uses an implicit function to generate LDR images with arbitrary EVs, including those unseen during training.

Deep Learning HDR Reconstruction +1

MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution

1 code implementation ICCV 2023 Si-Cun Chen, Yi-Hsin Chen, Yen-Yu Lin, Wen-Hsiao Peng

We motivate the use of forward motion from the perspective of learning individual motion trajectories, as opposed to learning a mixture of motion trajectories with backward motion.

Motion Interpolation Space-time Video Super-resolution +1

Learning Object-level Point Augmentor for Semi-supervised 3D Object Detection

1 code implementation19 Dec 2022 Cheng-Ju Ho, Chen-Hsuan Tai, Yi-Hsuan Tsai, Yen-Yu Lin, Ming-Hsuan Yang

In this work, we propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection.

3D Object Detection Knowledge Distillation +4

Meta Transferring for Deblurring

1 code implementation14 Oct 2022 Po-Sheng Liu, Fu-Jen Tsai, Yan-Tsung Peng, Chung-Chi Tsai, Chia-Wen Lin, Yen-Yu Lin

Most previous deblurring methods were built with a generic model trained on blurred images and their sharp counterparts.

Deblurring Meta-Learning +1

Stripformer: Strip Transformer for Fast Image Deblurring

2 code implementations10 Apr 2022 Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, Chia-Wen Lin

Images taken in dynamic scenes may contain unwanted motion blur, which significantly degrades visual quality.

Deblurring Image Deblurring

An MIL-Derived Transformer for Weakly Supervised Point Cloud Segmentation

no code implementations CVPR 2022 Cheng-Kun Yang, Ji-Jia Wu, Kai-Syun Chen, Yung-Yu Chuang, Yen-Yu Lin

We address weakly supervised point cloud segmentation by proposing a new model, MIL-derived transformer, to mine additional supervisory signals.

Model Optimization Multiple Instance Learning +1

BANet: Blur-aware Attention Networks for Dynamic Scene Deblurring

1 code implementation19 Jan 2021 Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, Chia-Wen Lin

Image motion blur results from a combination of object motions and camera shakes, and such blurring effect is generally directional and non-uniform.

Deblurring Image Deblurring +1

Unsupervised Point Cloud Object Co-Segmentation by Co-Contrastive Learning and Mutual Attention Sampling

1 code implementation ICCV 2021 Cheng-Kun Yang, Yung-Yu Chuang, Yen-Yu Lin

We formulate this task as an object point sampling problem, and develop two techniques, the mutual attention module and co-contrastive learning, to enable it.

Contrastive Learning Object

Temporal-Aware Self-Supervised Learning for 3D Hand Pose and Mesh Estimation in Videos

no code implementations6 Dec 2020 Liangjian Chen, Shih-Yao Lin, Yusheng Xie, Yen-Yu Lin, Xiaohui Xie

Experiments show that our modelachieves surprisingly good results, with 3D estimation ac-curacy on par with the state-of-the-art models trained with3D annotations, highlighting the benefit of the temporalconsistency in constraining 3D prediction models.

Pose Estimation Self-Supervised Learning

MVHM: A Large-Scale Multi-View Hand Mesh Benchmark for Accurate 3D Hand Pose Estimation

no code implementations6 Dec 2020 Liangjian Chen, Shih-Yao Lin, Yusheng Xie, Yen-Yu Lin, Xiaohui Xie

Based on the match algorithm, we propose an efficient pipeline to generate a large-scale multi-view hand mesh (MVHM) dataset with accurate 3D hand mesh and joint labels.

3D Hand Pose Estimation

DGGAN: Depth-image Guided Generative Adversarial Networks for Disentangling RGB and Depth Images in 3D Hand Pose Estimation

no code implementations6 Dec 2020 Liangjian Chen, Shih-Yao Lin, Yusheng Xie, Yen-Yu Lin, Wei Fan, Xiaohui Xie

Estimating3D hand poses from RGB images is essentialto a wide range of potential applications, but is challengingowing to substantial ambiguity in the inference of depth in-formation from RGB images.

3D Hand Pose Estimation Generative Adversarial Network

Every Pixel Matters: Center-aware Feature Alignment for Domain Adaptive Object Detector

1 code implementation ECCV 2020 Cheng-Chun Hsu, Yi-Hsuan Tsai, Yen-Yu Lin, Ming-Hsuan Yang

A domain adaptive object detector aims to adapt itself to unseen domains that may contain variations of object appearance, viewpoints or backgrounds.

Domain Adaptation

Regularizing Meta-Learning via Gradient Dropout

1 code implementation13 Apr 2020 Hung-Yu Tseng, Yi-Wen Chen, Yi-Hsuan Tsai, Sifei Liu, Yen-Yu Lin, Ming-Hsuan Yang

With the growing attention on learning-to-learn new tasks using only a few examples, meta-learning has been widely used in numerous problems such as few-shot classification, reinforcement learning, and domain generalization.

Domain Generalization Meta-Learning +1

Deep Semantic Matching with Foreground Detection and Cycle-Consistency

no code implementations31 Mar 2020 Yun-Chun Chen, Po-Hsiang Huang, Li-Yu Yu, Jia-Bin Huang, Ming-Hsuan Yang, Yen-Yu Lin

Establishing dense semantic correspondences between object instances remains a challenging problem due to background clutter, significant scale and pose differences, and large intra-class variations.

CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency

no code implementations CVPR 2019 Yun-Chun Chen, Yen-Yu Lin, Ming-Hsuan Yang, Jia-Bin Huang

Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another (e. g., synthetic to real images).

Data Augmentation Image-to-Image Translation +3

Referring Expression Object Segmentation with Caption-Aware Consistency

1 code implementation10 Oct 2019 Yi-Wen Chen, Yi-Hsuan Tsai, Tiantian Wang, Yen-Yu Lin, Ming-Hsuan Yang

To this end, we propose an end-to-end trainable comprehension network that consists of the language and visual encoders to extract feature representations from both domains.

Caption Generation Object +4

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

1 code implementation13 Jun 2019 Yun-Chun Chen, Yen-Yu Lin, Ming-Hsuan Yang, Jia-Bin Huang

In contrast to existing algorithms that tackle the tasks of semantic matching and object co-segmentation in isolation, our method exploits the complementary nature of the two tasks.

Object Segmentation +1

Unseen Object Segmentation in Videos via Transferable Representations

no code implementations8 Jan 2019 Yi-Wen Chen, Yi-Hsuan Tsai, Chu-Ya Yang, Yen-Yu Lin, Ming-Hsuan Yang

The entire process is decomposed into two tasks: 1) solving a submodular function for selecting object-like segments, and 2) learning a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video.

Object Segmentation +1

Unsupervised CNN-based Co-Saliency Detection with Graphical Optimization

no code implementations ECCV 2018 Kuang-Jui Hsu, Chung-Chi Tsai, Yen-Yu Lin, Xiaoning Qian, Yung-Yu Chuang

In this paper, we address co-saliency detection in a set of images jointly covering objects of a specific class by an unsupervised convolutional neural network (CNN).

Co-Salient Object Detection

DeepCD: Learning Deep Complementary Descriptors for Patch Representations

1 code implementation ICCV 2017 Tsun-Yi Yang, Jo-Han Hsu, Yen-Yu Lin, Yung-Yu Chuang

This paper presents the DeepCD framework which learns a pair of complementary descriptors jointly for a patch by employing deep learning techniques.

Accumulated Stability Voting: A Robust Descriptor From Descriptors of Multiple Scales

1 code implementation CVPR 2016 Tsun-Yi Yang, Yen-Yu Lin, Yung-Yu Chuang

Experiments on popular benchmarks demonstrate the effectiveness of our descriptors and their superiority to the state-of-the-art descriptors.

Robust Image Alignment With Multiple Feature Descriptors and Matching-Guided Neighborhoods

no code implementations CVPR 2015 Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang

First, the performance of descriptor-based approaches to image alignment relies on the chosen descriptor, but the optimal descriptor typically varies from image to image, or even pixel to pixel.

Descriptor Ensemble: An Unsupervised Approach to Descriptor Fusion in the Homography Space

no code implementations13 Dec 2014 Yuan-Ting Hu, Yen-Yu Lin, Hsin-Yi Chen, Kuang-Jui Hsu, Bing-Yu Chen

Inspired by the observation that the homographies of correct feature correspondences vary smoothly along the spatial domain, our approach stands on the unsupervised nature of feature matching, and can select a good descriptor for matching each feature point.

Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data

no code implementations CVPR 2014 Feng-Ju Chang, Yen-Yu Lin, Kuang-Jui Hsu

By treating a bounding box as a bag with its segment hypotheses as structured instances, MSIL-CRF selects the most likely segment hypotheses by leveraging the knowledge derived from both the labeled and uncertain training data.

Multiple Instance Learning Segmentation +1

Robust Feature Matching with Alternate Hough and Inverted Hough Transforms

no code implementations CVPR 2013 Hsin-Yi Chen, Yen-Yu Lin, Bing-Yu Chen

Inspired by the fact that nearby features on the same object share coherent homographies in matching, we cast the task of feature matching as a density estimation problem in the Hough space spanned by the hypotheses of homographies.

Density Estimation

Dimensionality Reduction for Data in Multiple Feature Representations

no code implementations NeurIPS 2008 Yen-Yu Lin, Tyng-Luh Liu, Chiou-Shann Fuh

In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance.

Clustering Dimensionality Reduction +2

Cannot find the paper you are looking for? You can Submit a new open access paper.