Search Results for author: Yew-Soon Ong

Found 76 papers, 28 papers with code

Learning Structurally Stabilized Representations for Multi-modal Lossless DNA Storage

no code implementations17 Jul 2024 Ben Cao, Tiantian He, Xue Li, Bin Wang, Xiaohu Wu, Qiang Zhang, Yew-Soon Ong

By incorporating these novel strategies, the proposed RSRL can learn highly durable, dense, and lossless representations for the subsequent storage tasks into DNA sequences.

Representation Learning

Road Network Representation Learning with the Third Law of Geography

no code implementations6 Jun 2024 Haicang Zhou, Weiming Huang, Yile Chen, Tiantian He, Gao Cong, Yew-Soon Ong

In response, we propose to endow road network representation with the principles of the recent Third Law of Geography.

Contrastive Learning Representation Learning

Learning Mixture-of-Experts for General-Purpose Black-Box Discrete Optimization

no code implementations29 May 2024 Shengcai Liu, Zhiyuan Wang, Yew-Soon Ong, Xin Yao, Ke Tang

MEGO can be used as a standalone sample-efficient optimizer or in conjunction with existing search methods as an initial solution generator.

Bridging the Gap Between Theory and Practice: Benchmarking Transfer Evolutionary Optimization

no code implementations20 Apr 2024 Yaqing Hou, Wenqiang Ma, Abhishek Gupta, Kavitesh Kumar Bali, Hongwei Ge, Qiang Zhang, Carlos A. Coello Coello, Yew-Soon Ong

This paper pioneers a practical TrEO benchmark suite, integrating problems from the literature categorized based on the three essential aspects of Big Source Task-Instances: volume, variety, and velocity.

Benchmarking

Where to Move Next: Zero-shot Generalization of LLMs for Next POI Recommendation

1 code implementation2 Apr 2024 Shanshan Feng, Haoming Lyu, Caishun Chen, Yew-Soon Ong

However, the generalization abilities of LLMs still are unexplored to address the next POI recommendations, where users' geographical movement patterns should be extracted.

Zero-shot Generalization

A Simple Yet Effective Approach for Diversified Session-Based Recommendation

1 code implementation30 Mar 2024 Qing Yin, Hui Fang, Zhu Sun, Yew-Soon Ong

It consists of two novel designs: a model-agnostic diversity-oriented loss function, and a non-invasive category-aware attention mechanism.

Diversity Session-Based Recommendations

Precise-Physics Driven Text-to-3D Generation

no code implementations19 Mar 2024 Qingshan Xu, Jiao Liu, Melvin Wong, Caishun Chen, Yew-Soon Ong

However, existing generative methods mostly focus on geometric or visual plausibility while ignoring precise physics perception for the generated 3D shapes.

3D Generation Text to 3D

Robust Distillation via Untargeted and Targeted Intermediate Adversarial Samples

no code implementations CVPR 2024 Junhao Dong, Piotr Koniusz, Junxi Chen, Z. Jane Wang, Yew-Soon Ong

Existing methods typically align probability distributions of natural and adversarial samples between teacher and student models but they overlook intermediate adversarial samples along the "adversarial path" formed by the multi-step gradient ascent of a sample towards the decision boundary.

Adversarial Robustness Knowledge Distillation

Dynamic In-Context Learning from Nearest Neighbors for Bundle Generation

no code implementations26 Dec 2023 Zhu Sun, Kaidong Feng, Jie Yang, Xinghua Qu, Hui Fang, Yew-Soon Ong, Wenyuan Liu

To enhance reliability and mitigate the hallucination issue, we develop (1) a self-correction strategy to foster mutual improvement in both tasks without supervision signals; and (2) an auto-feedback mechanism to recurrently offer dynamic supervision based on the distinct mistakes made by ChatGPT on various neighbor sessions.

Hallucination In-Context Learning +2

Large Language Models for Intent-Driven Session Recommendations

1 code implementation7 Dec 2023 Zhu Sun, Hongyang Liu, Xinghua Qu, Kaidong Feng, Yan Wang, Yew-Soon Ong

Intent-aware session recommendation (ISR) is pivotal in discerning user intents within sessions for precise predictions.

Generalizable Neural Physics Solvers by Baldwinian Evolution

1 code implementation6 Dec 2023 Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, Pao-Hsiung Chiu, Joshua Shao Zheng Low, My Ha Dao, Yew-Soon Ong

Physics-informed neural networks (PINNs) are at the forefront of scientific machine learning, making possible the creation of machine intelligence that is cognizant of physical laws and able to accurately simulate them.

Meta-Learning

Large Language Models as Evolutionary Optimizers

1 code implementation29 Oct 2023 Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, Yew-Soon Ong

Specifically, in each generation of the evolutionary search, LMEA instructs the LLM to select parent solutions from current population, and perform crossover and mutation to generate offspring solutions.

Combinatorial Optimization Evolutionary Algorithms

HPCR: Holistic Proxy-based Contrastive Replay for Online Continual Learning

1 code implementation26 Sep 2023 Huiwei Lin, Shanshan Feng, Baoquan Zhang, Xutao Li, Yew-Soon Ong, Yunming Ye

Inspired by this finding, we propose a novel replay-based method called proxy-based contrastive replay (PCR), which replaces anchor-to-sample pairs with anchor-to-proxy pairs in the contrastive-based loss to alleviate the phenomenon of forgetting.

Continual Learning

Neural Influence Estimator: Towards Real-time Solutions to Influence Blocking Maximization

no code implementations27 Aug 2023 Wenjie Chen, Shengcai Liu, Yew-Soon Ong, Ke Tang

Moreover, given a real-time constraint of one minute, the NIE-based method can solve IBM problems with up to hundreds of thousands of nodes, which is at least one order of magnitude larger than what can be solved by existing methods.

Blocking Misinformation

Meta-learning enhanced next POI recommendation by leveraging check-ins from auxiliary cities

1 code implementation18 Aug 2023 Jinze Wang, Lu Zhang, Zhu Sun, Yew-Soon Ong

Particularly, a city-level correlation strategy is devised to attentively capture common patterns among cities, so as to transfer more relevant knowledge from more correlated cities.

Meta-Learning

Chance-Constrained Multiple-Choice Knapsack Problem: Model, Algorithms, and Applications

2 code implementations26 Jun 2023 Xuanfeng Li, Shengcai Liu, Jin Wang, Xiao Chen, Yew-Soon Ong, Ke Tang

In particular, we focus on the practical scenario of CCMCKP, where the probability distributions of random weights are unknown but only sample data is available.

Combinatorial Optimization Multiple-choice

Prompt Evolution for Generative AI: A Classifier-Guided Approach

no code implementations24 May 2023 Melvin Wong, Yew-Soon Ong, Abhishek Gupta, Kavitesh K. Bali, Caishun Chen

Synthesis of digital artifacts conditioned on user prompts has become an important paradigm facilitating an explosion of use cases with generative AI.

Large Language Models can be Guided to Evade AI-Generated Text Detection

1 code implementation18 May 2023 Ning Lu, Shengcai Liu, Rui He, Qi Wang, Yew-Soon Ong, Ke Tang

Large language models (LLMs) have shown remarkable performance in various tasks and have been extensively utilized by the public.

Question Answering Text Detection

Bayesian Federated Learning: A Survey

no code implementations26 Apr 2023 Longbing Cao, Hui Chen, Xuhui Fan, Joao Gama, Yew-Soon Ong, Vipin Kumar

This survey presents a critical overview of BFL, including its basic concepts, its relations to Bayesian learning in the context of FL, and a taxonomy of BFL from both Bayesian and federated perspectives.

Federated Learning Privacy Preserving

Policy Dispersion in Non-Markovian Environment

no code implementations28 Feb 2023 Bohao Qu, Xiaofeng Cao, Jielong Yang, Hechang Chen, Chang Yi, Ivor W. Tsang, Yew-Soon Ong

To resolve this problem, this paper tries to learn the diverse policies from the history of state-action pairs under a non-Markovian environment, in which a policy dispersion scheme is designed for seeking diverse policy representation.

LSA-PINN: Linear Boundary Connectivity Loss for Solving PDEs on Complex Geometry

no code implementations3 Feb 2023 Jian Cheng Wong, Pao-Hsiung Chiu, Chinchun Ooi, My Ha Dao, Yew-Soon Ong

On the other hand, if the samples are too sparse, existing PINNs tend to overfit the near boundary region, leading to incorrect solution.

Neuroevolution of Physics-Informed Neural Nets: Benchmark Problems and Comparative Results

no code implementations15 Dec 2022 Nicholas Sung Wei Yong, Jian Cheng Wong, Pao-Hsiung Chiu, Abhishek Gupta, Chinchun Ooi, Yew-Soon Ong

Hence, neuroevolution algorithms, with their superior global search capacity, may be a better choice for PINNs relative to gradient descent methods.

Evolutionary Algorithms

Not All Neighbors Are Worth Attending to: Graph Selective Attention Networks for Semi-supervised Learning

no code implementations14 Oct 2022 Tiantian He, Haicang Zhou, Yew-Soon Ong, Gao Cong

We further propose Graph selective attention networks (SATs) to learn representations from the highly correlated node features identified and investigated by different SA mechanisms.

Graph Attention

A Multi-Channel Next POI Recommendation Framework with Multi-Granularity Check-in Signals

1 code implementation1 Sep 2022 Zhu Sun, Yu Lei, Lu Zhang, Chen Li, Yew-Soon Ong, Jie Zhang

Being equipped with three modules (i. e., global user behavior encoder, local multi-channel encoder, and region-aware weighting strategy), MCMG is capable of capturing both fine- and coarse-grained sequential regularities as well as exploring the dynamic impact of multi-channel by differentiating the region check-in patterns.

Understanding Diversity in Session-Based Recommendation

1 code implementation29 Aug 2022 Qing Yin, Hui Fang, Zhu Sun, Yew-Soon Ong

Besides the "trade-off" relationship, they might be positively correlated with each other, that is, having a same-trend (win-win or lose-lose) relationship, which varies across different methods and datasets.

Diversity Session-Based Recommendations

Importance Prioritized Policy Distillation

1 code implementation KDD 2022 Xinghua Qu, Yew-Soon Ong, Abhishek Gupta, Pengfei Wei, Zhu Sun, Zejun Ma

Given such an issue, we denote the \emph{frame importance} as its contribution to the expected reward on a particular frame, and hypothesize that adapting such frame importance could benefit the performance of the distilled student policy.

Atari Games Decision Making +1

DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation

2 code implementations22 Jun 2022 Zhu Sun, Hui Fang, Jie Yang, Xinghua Qu, Hongyang Liu, Di Yu, Yew-Soon Ong, Jie Zhang

Recently, one critical issue looms large in the field of recommender systems -- there are no effective benchmarks for rigorous evaluation -- which consequently leads to unreproducible evaluation and unfair comparison.

Benchmarking Recommendation Systems

Geo-Neus: Geometry-Consistent Neural Implicit Surfaces Learning for Multi-view Reconstruction

1 code implementation31 May 2022 Qiancheng Fu, Qingshan Xu, Yew-Soon Ong, Wenbing Tao

Recently, neural implicit surfaces learning by volume rendering has become popular for multi-view reconstruction.

Surface Reconstruction

Jacobian Granger Causal Neural Networks for Analysis of Stationary and Nonstationary Data

no code implementations19 May 2022 Suryadi, Yew-Soon Ong, Lock Yue Chew

Granger causality is a commonly used method for uncovering information flow and dependencies in a time series.

Time Series Time Series Analysis

A Survey on AI Sustainability: Emerging Trends on Learning Algorithms and Research Challenges

no code implementations8 May 2022 Zhenghua Chen, Min Wu, Alvin Chan, XiaoLi Li, Yew-Soon Ong

We believe that this technical review can help to promote a sustainable development of AI R&D activities for the research community.

Fairness

Multitask Neuroevolution for Reinforcement Learning with Long and Short Episodes

no code implementations21 Mar 2022 Nick Zhang, Abhishek Gupta, Zefeng Chen, Yew-Soon Ong

This paper is the first to address the shortcoming of today's methods via a novel neuroevolutionary multitasking (NuEMT) algorithm, designed to transfer information from a set of auxiliary tasks (of short episode length) to the target (full length) RL task at hand.

Continuous Control OpenAI Gym +2

Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains

no code implementations25 Feb 2022 Haitao Liu, Kai Wu, Yew-Soon Ong, Chao Bian, Xiaomo Jiang, Xiaofang Wang

Multi-task Gaussian process (MTGP) is a well-known non-parametric Bayesian model for learning correlated tasks effectively by transferring knowledge across tasks.

Dimensionality Reduction Inductive Bias

CAN-PINN: A Fast Physics-Informed Neural Network Based on Coupled-Automatic-Numerical Differentiation Method

no code implementations29 Oct 2021 Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, Yew-Soon Ong

In this study, novel physics-informed neural network (PINN) methods for coupling neighboring support points and their derivative terms which are obtained by automatic differentiation (AD), are proposed to allow efficient training with improved accuracy.

Synthesising Audio Adversarial Examples for Automatic Speech Recognition

no code implementations29 Sep 2021 Xinghua Qu, Pengfei Wei, Mingyong Gao, Zhu Sun, Yew-Soon Ong, Zejun Ma

Adversarial examples in automatic speech recognition (ASR) are naturally sounded by humans yet capable of fooling well trained ASR models to transcribe incorrectly.

Audio Synthesis Automatic Speech Recognition +2

Half a Dozen Real-World Applications of Evolutionary Multitasking, and More

no code implementations27 Sep 2021 Abhishek Gupta, Lei Zhou, Yew-Soon Ong, Zefeng Chen, Yaqing Hou

Until recently, the potential to transfer evolved skills across distinct optimization problem instances (or tasks) was seldom explored in evolutionary computation.

Learning in Sinusoidal Spaces with Physics-Informed Neural Networks

no code implementations20 Sep 2021 Jian Cheng Wong, Chinchun Ooi, Abhishek Gupta, Yew-Soon Ong

In this paper, we present a novel perspective of the merits of learning in sinusoidal spaces with PINNs.

Word2Pix: Word to Pixel Cross Attention Transformer in Visual Grounding

no code implementations31 Jul 2021 Heng Zhao, Joey Tianyi Zhou, Yew-Soon Ong

Current one-stage methods for visual grounding encode the language query as one holistic sentence embedding before fusion with visual feature.

Decoder Sentence +3

Multi-Party Dual Learning

no code implementations14 Apr 2021 Maoguo Gong, Yuan Gao, Yu Xie, A. K. Qin, Ke Pan, Yew-Soon Ong

The performance of machine learning algorithms heavily relies on the availability of a large amount of training data.

BIG-bench Machine Learning Self-Learning

RNA Alternative Splicing Prediction with Discrete Compositional Energy Network

2 code implementations7 Mar 2021 Alvin Chan, Anna Korsakova, Yew-Soon Ong, Fernaldo Richtia Winnerdy, Kah Wai Lim, Anh Tuan Phan

In the case of alternative splicing prediction, DCEN models mRNA transcript probabilities through its constituent splice junctions' energy values.

Multi-Space Evolutionary Search for Large-Scale Optimization

no code implementations23 Feb 2021 Liang Feng, Qingxia Shang, Yaqing Hou, Kay Chen Tan, Yew-Soon Ong

This paper thus proposes a new search paradigm, namely the multi-space evolutionary search, to enhance the existing evolutionary search methods for solving large-scale optimization problems.

Dimensionality Reduction Evolutionary Algorithms

Learning Conjoint Attentions for Graph Neural Nets

1 code implementation NeurIPS 2021 Tiantian He, Yew-Soon Ong, Lu Bai

Given the novel Conjoint Attention strategies, we then propose Graph conjoint attention networks (CATs) that can learn representations embedded with significant latent features deemed by the Conjoint Attentions.

Benchmarking Graph Attention

Can Transfer Neuroevolution Tractably Solve Your Differential Equations?

no code implementations6 Jan 2021 Jian Cheng Wong, Abhishek Gupta, Yew-Soon Ong

In the context of solving differential equations, we are faced with the problem of finding globally optimum parameters of the network, instead of being concerned with out-of-sample generalization.

Scalable Transfer Evolutionary Optimization: Coping with Big Task Instances

1 code implementation3 Dec 2020 Mojtaba Shakeri, Erfan Miahi, Abhishek Gupta, Yew-Soon Ong

Under such settings, existing transfer evolutionary optimization frameworks grapple with simultaneously satisfying two important quality attributes, namely (1) scalability against a growing number of source tasks and (2) online learning agility against sparsity of relevant sources to the target task of interest.

Graph Joint Attention Networks

no code implementations28 Sep 2020 Tiantian He, Lu Bai, Yew-Soon Ong

In this paper, we propose Graph Joint Attention Networks (JATs) to address the aforementioned challenge.

Benchmarking Graph Attention +1

Modulating Scalable Gaussian Processes for Expressive Statistical Learning

1 code implementation29 Aug 2020 Haitao Liu, Yew-Soon Ong, Xiaomo Jiang, Xiaofang Wang

For a learning task, Gaussian process (GP) is interested in learning the statistical relationship between inputs and outputs, since it offers not only the prediction mean but also the associated variability.

Gaussian Processes Variational Inference

Adversary Agnostic Robust Deep Reinforcement Learning

no code implementations14 Aug 2020 Xinghua Qu, Yew-Soon Ong, Abhishek Gupta, Zhu Sun

Motivated by this finding, we propose a new policy distillation loss with two terms: 1) a prescription gap maximization loss aiming at simultaneously maximizing the likelihood of the action selected by the teacher policy and the entropy over the remaining actions; 2) a corresponding Jacobian regularization loss that minimizes the magnitude of the gradient with respect to the input state.

Adversarial Robustness Atari Games +2

CoCon: A Self-Supervised Approach for Controlled Text Generation

1 code implementation ICLR 2021 Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang, Jie Fu

While there are studies that seek to control high-level attributes (such as sentiment and topic) of generated text, there is still a lack of more precise control over its content at the word- and phrase-level.

Text Generation

Deep Latent-Variable Kernel Learning

1 code implementation18 May 2020 Haitao Liu, Yew-Soon Ong, Xiaomo Jiang, Xiaofang Wang

Deep kernel learning (DKL) leverages the connection between Gaussian process (GP) and neural networks (NN) to build an end-to-end, hybrid model.

Heterogeneous Representation Learning: A Review

no code implementations28 Apr 2020 Joey Tianyi Zhou, Xi Peng, Yew-Soon Ong

The real-world data usually exhibits heterogeneous properties such as modalities, views, or resources, which brings some unique challenges wherein the key is Heterogeneous Representation Learning (HRL) termed in this paper.

Multi-Task Learning MULTI-VIEW LEARNING +1

What it Thinks is Important is Important: Robustness Transfers through Input Gradients

2 code implementations CVPR 2020 Alvin Chan, Yi Tay, Yew-Soon Ong

Learned weights of models robust to such perturbations are previously found to be transferable across different tasks but this applies only if the model architecture for the source and target tasks is the same.

Adversarial Robustness

Poison as a Cure: Detecting & Neutralizing Variable-Sized Backdoor Attacks in Deep Neural Networks

no code implementations19 Nov 2019 Alvin Chan, Yew-Soon Ong

Existing defenses are effective under certain conditions such as a small size of the poison pattern, knowledge about the ratio of poisoned training samples or when a validated clean dataset is available.

A Multi-Task Gradient Descent Method for Multi-Label Learning

no code implementations18 Nov 2019 Lu Bai, Yew-Soon Ong, Tiantian He, Abhishek Gupta

Multi-label learning studies the problem where an instance is associated with a set of labels.

Multi-Label Learning

Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods

1 code implementation14 Sep 2019 Haitao Liu, Yew-Soon Ong, Ziwei Yu, Jianfei Cai, Xiaobo Shen

Gaussian process classification (GPC) provides a flexible and powerful statistical framework describing joint distributions over function space.

Classification General Classification +3

A Survey on Multi-output Learning

no code implementations2 Jan 2019 Donna Xu, Yaxin Shi, Ivor W. Tsang, Yew-Soon Ong, Chen Gong, Xiaobo Shen

Multi-output learning aims to simultaneously predict multiple outputs given an input.

Decision Making

AIR5: Five Pillars of Artificial Intelligence Research

no code implementations30 Dec 2018 Yew-Soon Ong, Abhishek Gupta

In this article, we provide and overview of what we consider to be some of the most pressing research questions facing the fields of artificial intelligence (AI) and computational intelligence (CI); with the latter focusing on algorithms that are inspired by various natural phenomena.

Artificial Life

Towards Safer Smart Contracts: A Sequence Learning Approach to Detecting Vulnerabilities

1 code implementation16 Nov 2018 Wesley Joon-Wie Tann, Xing Jie Han, Sourav Sen Gupta, Yew-Soon Ong

In particular, we propose a novel approach of sequential learning of smart contract vulnerabilities using machine learning --- long-short term memory (LSTM) --- that perpetually learns from an increasing number of contracts handled over time, leading to safer smart contracts.

Cryptography and Security

Large-scale Heteroscedastic Regression via Gaussian Process

no code implementations3 Nov 2018 Haitao Liu, Yew-Soon Ong, Jianfei Cai

To improve the scalability, we first develop a variational sparse inference algorithm, named VSHGP, to handle large-scale datasets.

regression Variational Inference

Understanding and Comparing Scalable Gaussian Process Regression for Big Data

no code implementations3 Nov 2018 Haitao Liu, Jianfei Cai, Yew-Soon Ong, Yi Wang

This paper devotes to investigating the methodological characteristics and performance of representative global and local scalable GPs including sparse approximations and local aggregations from four main perspectives: scalability, capability, controllability and robustness.

regression

When Gaussian Process Meets Big Data: A Review of Scalable GPs

no code implementations3 Jul 2018 Haitao Liu, Yew-Soon Ong, Xiaobo Shen, Jianfei Cai

The review of scalable GPs in the GP community is timely and important due to the explosion of data size.

Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression

1 code implementation ICML 2018 Haitao Liu, Jianfei Cai, Yi Wang, Yew-Soon Ong

In order to scale standard Gaussian process (GP) regression to large-scale datasets, aggregation models employ factorized training process and then combine predictions from distributed experts.

Distributed Computing regression

Evolutionary Multitasking for Single-objective Continuous Optimization: Benchmark Problems, Performance Metric, and Baseline Results

no code implementations12 Jun 2017 Bingshui Da, Yew-Soon Ong, Liang Feng, A. K. Qin, Abhishek Gupta, Zexuan Zhu, Chuan-Kang Ting, Ke Tang, Xin Yao

In this report, we suggest nine test problems for multi-task single-objective optimization (MTSOO), each of which consists of two single-objective optimization tasks that need to be solved simultaneously.

Evolutionary Multitasking for Multiobjective Continuous Optimization: Benchmark Problems, Performance Metrics and Baseline Results

no code implementations8 Jun 2017 Yuan Yuan, Yew-Soon Ong, Liang Feng, A. K. Qin, Abhishek Gupta, Bingshui Da, Qingfu Zhang, Kay Chen Tan, Yaochu Jin, Hisao Ishibuchi

In this report, we suggest nine test problems for multi-task multi-objective optimization (MTMOO), each of which consists of two multiobjective optimization tasks that need to be solved simultaneously.

Multiobjective Optimization

Co-evolutionary multi-task learning for dynamic time series prediction

1 code implementation27 Feb 2017 Rohitash Chandra, Yew-Soon Ong, Chi-Keong Goh

In this paper, we propose a co-evolutionary multi-task learning method that provides a synergy between multi-task learning and co-evolutionary algorithms to address dynamic time series prediction.

Evolutionary Algorithms Multi-Task Learning +2

Genetic Transfer or Population Diversification? Deciphering the Secret Ingredients of Evolutionary Multitask Optimization

no code implementations19 Jul 2016 Abhishek Gupta, Yew-Soon Ong

Evolutionary multitasking has recently emerged as a novel paradigm that enables the similarities and/or latent complementarities (if present) between distinct optimization tasks to be exploited in an autonomous manner simply by solving them together with a unified solution representation scheme.

Adaptive Subgradient Methods for Online AUC Maximization

no code implementations1 Feb 2016 Yi Ding, Peilin Zhao, Steven C. H. Hoi, Yew-Soon Ong

Despite their encouraging results reported, the existing online AUC maximization algorithms often adopt simple online gradient descent approaches that fail to exploit the geometrical knowledge of the data observed during the online learning process, and thus could suffer from relatively larger regret.

Cannot find the paper you are looking for? You can Submit a new open access paper.