no code implementations • 21 Mar 2025 • Zilin Dai, Lehong Wang, Fangzhou Lin, Yidong Wang, Zhigang Li, Kazunori D Yamada, Ziming Zhang, Wang Lu
Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones.
1 code implementation • 13 Mar 2025 • Shu-Xun Yang, Cunxiang Wang, Yidong Wang, Xiaotao Gu, Minlie Huang, Jie Tang
Evaluating mathematical capabilities is critical for assessing the overall performance of large language models (LLMs).
1 code implementation • 19 Dec 2024 • Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran Zeng, Jindong Wang, Wei Ye, Shikun Zhang
Large Language Models have demonstrated remarkable capabilities in code generation, yet they often struggle with complex programming tasks that require deep algorithmic reasoning.
no code implementations • 21 Nov 2024 • Tingyuan Zhu, Shudong Liu, Yidong Wang, Derek F. Wong, Han Yu, Takahiro Shinozaki, Jindong Wang
In addition, for specific tasks, different rules tend to have a consistent impact on model performance.
no code implementations • 19 Oct 2024 • Hao Chen, Abdul Waheed, Xiang Li, Yidong Wang, Jindong Wang, Bhiksha Raj, Marah I. Abdin
The rise of Large Language Models (LLMs) has accentuated the need for diverse, high-quality pre-training data.
1 code implementation • 21 Aug 2024 • Xuanwang Zhang, Yunze Song, Yidong Wang, Shuyun Tang, Xinfeng Li, Zhengran Zeng, Zhen Wu, Wei Ye, Wenyuan Xu, Yue Zhang, Xinyu Dai, Shikun Zhang, Qingsong Wen
Leveraging RAGLAB, we conduct a fair comparison of 6 RAG algorithms across 10 benchmarks.
no code implementations • 2 Jul 2024 • Chuanpeng Yang, Wang Lu, Yao Zhu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, Yiqiang Chen
Through in-depth understanding of the latest advancements and practical applications, this survey provides valuable resources for researchers, paving the way for sustained progress in this field.
no code implementations • 27 Jun 2024 • Xiaoling Zhou, Wei Ye, Yidong Wang, Chaoya Jiang, Zhemg Lee, Rui Xie, Shikun Zhang
The emergence of in-context learning (ICL) enables large pre-trained language models (PLMs) to make predictions for unseen inputs without updating parameters.
1 code implementation • 10 Jun 2024 • Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai, Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, Yue Zhang
This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys in rapidly evolving fields like artificial intelligence.
1 code implementation • 9 Apr 2024 • Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Zhengran Zeng, Wei Ye, Jindong Wang, Yue Zhang, Shikun Zhang
The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency.
1 code implementation • 6 Mar 2024 • Xidong Wang, Nuo Chen, Junyin Chen, Yidong Wang, Guorui Zhen, Chunxian Zhang, Xiangbo Wu, Yan Hu, Anningzhe Gao, Xiang Wan, Haizhou Li, Benyou Wang
Despite the vast repository of global medical knowledge predominantly being in English, local languages are crucial for delivering tailored healthcare services, particularly in areas with limited medical resources.
2 code implementations • 23 Feb 2024 • Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Wei Ye, Jindong Wang, Xing Xie, Yue Zhang, Shikun Zhang
Automatic evaluation methods for large language models (LLMs) are hindered by data contamination, leading to inflated assessments of their effectiveness.
1 code implementation • 2 Feb 2024 • Hao Chen, Jindong Wang, Lei Feng, Xiang Li, Yidong Wang, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj
Weakly supervised learning generally faces challenges in applicability to various scenarios with diverse weak supervision and in scalability due to the complexity of existing algorithms, thereby hindering the practical deployment.
1 code implementation • 26 Dec 2023 • Linyi Yang, Shuibai Zhang, Zhuohao Yu, Guangsheng Bao, Yidong Wang, Jindong Wang, Ruochen Xu, Wei Ye, Xing Xie, Weizhu Chen, Yue Zhang
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
1 code implementation • 11 Oct 2023 • Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xiangru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi Yao, Wenyang Gao, Xuming Hu, Zehan Qi, Yidong Wang, Linyi Yang, Jindong Wang, Xing Xie, Zheng Zhang, Yue Zhang
This survey addresses the crucial issue of factuality in Large Language Models (LLMs).
1 code implementation • 6 Jul 2023 • Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, Xing Xie
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications.
2 code implementations • 8 Jun 2023 • Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, Yue Zhang
To ensure the reliability of PandaLM, we collect a diverse human-annotated test dataset, where all contexts are generated by humans and labels are aligned with human preferences.
1 code implementation • 7 Jun 2023 • Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue Zhang, Neil Zhenqiang Gong, Xing Xie
Furthermore, we present a comprehensive analysis to understand the mystery behind prompt robustness and its transferability.
Cross-Lingual Paraphrase Identification
Machine Translation
+5
no code implementations • 23 May 2023 • Linyi Yang, Yaoxiao Song, Xuan Ren, Chenyang Lyu, Yidong Wang, Lingqiao Liu, Jindong Wang, Jennifer Foster, Yue Zhang
Machine learning (ML) systems in natural language processing (NLP) face significant challenges in generalizing to out-of-distribution (OOD) data, where the test distribution differs from the training data distribution.
1 code implementation • 22 May 2023 • Hao Chen, Ankit Shah, Jindong Wang, Ran Tao, Yidong Wang, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj
In this paper, we introduce imprecise label learning (ILL), a framework for the unification of learning with various imprecise label configurations.
Ranked #1 on
Learning with noisy labels
on mini WebVision 1.0
1 code implementation • NeurIPS 2023 • Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao Yue, Bowen Ding, Zhikun Xu, Yidong Wang, Xiangkun Hu, Zheng Zhang, Yue Zhang
This study focuses on the evaluation of the Open Question Answering (Open-QA) task, which can directly estimate the factuality of large language models (LLMs).
1 code implementation • 4 Apr 2023 • Yidong Wang, Zhuohao Yu, Jindong Wang, Qiang Heng, Hao Chen, Wei Ye, Rui Xie, Xing Xie, Shikun Zhang
However, their performance on imbalanced dataset is relatively poor, where the distribution of classes in the training dataset is skewed, leading to poor performance in predicting minority classes.
1 code implementation • 22 Feb 2023 • Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Haojun Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue Zhang, Xing Xie
In this paper, we conduct a thorough evaluation of the robustness of ChatGPT from the adversarial and out-of-distribution (OOD) perspective.
4 code implementations • 26 Jan 2023 • Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj, Marios Savvides
The critical challenge of Semi-Supervised Learning (SSL) is how to effectively leverage the limited labeled data and massive unlabeled data to improve the model's generalization performance.
no code implementations • 20 Nov 2022 • Hao Chen, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Marios Savvides, Bhiksha Raj
While standard SSL assumes uniform data distribution, we consider a more realistic and challenging setting called imbalanced SSL, where imbalanced class distributions occur in both labeled and unlabeled data.
1 code implementation • 15 Nov 2022 • Linyi Yang, Shuibai Zhang, Libo Qin, Yafu Li, Yidong Wang, Hanmeng Liu, Jindong Wang, Xing Xie, Yue Zhang
Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase.
Natural Language Understanding
Out-of-Distribution Generalization
no code implementations • 1 Sep 2022 • Wang Lu, Jindong Wang, Yidong Wang, Xing Xie
For optimization, we utilize an adapted Mixup to generate an out-of-distribution dataset that can guide the preference direction and optimize with Pareto optimization.
1 code implementation • COLING 2022 • Yidong Wang, Hao Wu, Ao Liu, Wenxin Hou, Zhen Wu, Jindong Wang, Takahiro Shinozaki, Manabu Okumura, Yue Zhang
Limited labeled data increase the risk of distribution shift between test data and training data.
1 code implementation • 15 Aug 2022 • Hao Chen, Ran Tao, Han Zhang, Yidong Wang, Xiang Li, Wei Ye, Jindong Wang, Guosheng Hu, Marios Savvides
Beyond classification, Conv-Adapter can generalize to detection and segmentation tasks with more than 50% reduction of parameters but comparable performance to the traditional full fine-tuning.
5 code implementations • 12 Aug 2022 • Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, RenJie Wang, Linyi Yang, Zhi Zhou, Lan-Zhe Guo, Heli Qi, Zhen Wu, Yu-Feng Li, Satoshi Nakamura, Wei Ye, Marios Savvides, Bhiksha Raj, Takahiro Shinozaki, Bernt Schiele, Jindong Wang, Xing Xie, Yue Zhang
We further provide the pre-trained versions of the state-of-the-art neural models for CV tasks to make the cost affordable for further tuning.
6 code implementations • 15 May 2022 • Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, Xing Xie
Semi-supervised Learning (SSL) has witnessed great success owing to the impressive performances brought by various methods based on pseudo labeling and consistency regularization.
1 code implementation • 14 Dec 2021 • Yidong Wang, BoWen Zhang, Wenxin Hou, Zhen Wu, Jindong Wang, Takahiro Shinozaki
The long-tailed class distribution in visual recognition tasks poses great challenges for neural networks on how to handle the biased predictions between head and tail classes, i. e., the model tends to classify tail classes as head classes.
2 code implementations • NeurIPS 2021 • BoWen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, Takahiro Shinozaki
However, like other modern SSL algorithms, FixMatch uses a pre-defined constant threshold for all classes to select unlabeled data that contribute to the training, thus failing to consider different learning status and learning difficulties of different classes.
2 code implementations • 18 May 2021 • Wenxin Hou, Han Zhu, Yidong Wang, Jindong Wang, Tao Qin, Renjun Xu, Takahiro Shinozaki
Based on our previous MetaAdapter that implicitly leverages adapters, we propose a novel algorithms called SimAdapter for explicitly learning knowledge from adapters.
Ranked #1 on
Cross-Lingual ASR
on Common Voice
no code implementations • 21 May 2020 • Xi Li, Huimin Ma, Hongbing Ma, Yidong Wang
In order to solve this problem, the research proposes an unsupervised foreground segmentation method based on semantic-apparent feature fusion (SAFF).