1 code implementation • 26 Jan 2023 • Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj, Marios Savvides
The critical challenge of Semi-Supervised Learning (SSL) is how to effectively leverage the limited labeled data and massive unlabeled data to improve the model's generalization performance.
no code implementations • 20 Nov 2022 • Hao Chen, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Marios Savvides, Bhiksha Raj
While standard SSL assumes uniform data distribution, we consider a more realistic and challenging setting called imbalanced SSL, where imbalanced class distributions occur in both labeled and unlabeled data.
1 code implementation • 15 Nov 2022 • Linyi Yang, Shuibai Zhang, Libo Qin, Yafu Li, Yidong Wang, Hanmeng Liu, Jindong Wang, Xing Xie, Yue Zhang
Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase.
Natural Language Understanding
Out-of-Distribution Generalization
no code implementations • 1 Sep 2022 • Wang Lu, Jindong Wang, Yidong Wang, Kan Ren, Yiqiang Chen, Xing Xie
For optimization, we utilize an adapted Mixup to generate an out-of-distribution dataset that can guide the preference direction and optimize with Pareto optimization.
1 code implementation • COLING 2022 • Yidong Wang, Hao Wu, Ao Liu, Wenxin Hou, Zhen Wu, Jindong Wang, Takahiro Shinozaki, Manabu Okumura, Yue Zhang
Limited labeled data increase the risk of distribution shift between test data and training data.
no code implementations • 15 Aug 2022 • Hao Chen, Ran Tao, Han Zhang, Yidong Wang, Wei Ye, Jindong Wang, Guosheng Hu, Marios Savvides
Beyond classification, Conv-Adapter can generalize to detection and segmentation tasks with more than 50% reduction of parameters but comparable performance to the traditional full fine-tuning.
1 code implementation • 12 Aug 2022 • Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, RenJie Wang, Linyi Yang, Zhi Zhou, Lan-Zhe Guo, Heli Qi, Zhen Wu, Yu-Feng Li, Satoshi Nakamura, Wei Ye, Marios Savvides, Bhiksha Raj, Takahiro Shinozaki, Bernt Schiele, Jindong Wang, Xing Xie, Yue Zhang
We further provide the pre-trained versions of the state-of-the-art neural models for CV tasks to make the cost affordable for further tuning.
1 code implementation • 15 May 2022 • Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, Xing Xie
Based on the analysis, we hence propose FreeMatch to define and adjust the confidence threshold in a self-adaptive manner according to the model's learning status.
no code implementations • 14 Dec 2021 • Yidong Wang, BoWen Zhang, Wenxin Hou, Zhen Wu, Jindong Wang, Takahiro Shinozaki
The long-tailed class distribution in visual recognition tasks poses great challenges for neural networks on how to handle the biased predictions between head and tail classes, i. e., the model tends to classify tail classes as head classes.
1 code implementation • NeurIPS 2021 • BoWen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, Takahiro Shinozaki
However, like other modern SSL algorithms, FixMatch uses a pre-defined constant threshold for all classes to select unlabeled data that contribute to the training, thus failing to consider different learning status and learning difficulties of different classes.
2 code implementations • 18 May 2021 • Wenxin Hou, Han Zhu, Yidong Wang, Jindong Wang, Tao Qin, Renjun Xu, Takahiro Shinozaki
Based on our previous MetaAdapter that implicitly leverages adapters, we propose a novel algorithms called SimAdapter for explicitly learning knowledge from adapters.
Ranked #1 on
Cross-Lingual ASR
on Common Voice
no code implementations • 21 May 2020 • Xi Li, Huimin Ma, Hongbing Ma, Yidong Wang
In order to solve this problem, the research proposes an unsupervised foreground segmentation method based on semantic-apparent feature fusion (SAFF).