Search Results for author: Yifan Wu

Found 66 papers, 15 papers with code

Conformal Prediction and Human Decision Making

no code implementations12 Mar 2025 Jessica Hullman, Yifan Wu, Dawei Xie, Ziyang Guo, Andrew Gelman

We identify ways in which conformal prediction sets and posthoc predictive uncertainty quantification more broadly are in tension with common goals and needs in human-AI decision making.

Conformal Prediction Decision Making +2

AskChart: Universal Chart Understanding through Textual Enhancement

1 code implementation26 Dec 2024 Xudong Yang, Yifan Wu, Yizhang Zhu, Nan Tang, Yuyu Luo

To effectively train AskChart, we design a three-stage training strategy to align visual and textual modalities for learning robust visual-textual representations and optimizing the learning of the MoE layer.

Chart Understanding

Optimized Gradient Clipping for Noisy Label Learning

1 code implementation12 Dec 2024 Xichen Ye, Yifan Wu, Weizhong Zhang, Xiaoqiang Li, Yifan Chen, Cheng Jin

Previous research has shown that constraining the gradient of loss function with respect to model-predicted probabilities can enhance the model robustness against noisy labels.

Revisiting Energy-Based Model for Out-of-Distribution Detection

1 code implementation4 Dec 2024 Yifan Wu, Xichen Ye, Songmin Dai, Dengye Pan, Xiaoqiang Li, Weizhong Zhang, Yifan Chen

We recognize the "energy barrier" in OOD detection, which characterizes the energy difference between in-distribution (ID) and OOD samples and eases detection.

Out-of-Distribution Detection Out of Distribution (OOD) Detection

Active Negative Loss: A Robust Framework for Learning with Noisy Labels

1 code implementation3 Dec 2024 Xichen Ye, Yifan Wu, Yiwen Xu, Xiaoqiang Li, Weizhong Zhang, Yifan Chen

By replacing MAE in APL with our proposed NNLFs, we enhance APL and present a new framework called Active Negative Loss (ANL).

Image Segmentation Learning with noisy labels +1

MolMetaLM: a Physicochemical Knowledge-Guided Molecular Meta Language Model

1 code implementation23 Nov 2024 Yifan Wu, Min Zeng, Yang Li, Yang Zhang, Min Li

Most current molecular language models transfer the masked language model or image-text generation model from natural language processing to molecular field.

Language Modeling Language Modelling +2

Unexploited Information Value in Human-AI Collaboration

no code implementations3 Nov 2024 Ziyang Guo, Yifan Wu, Jason Hartline, Jessica Hullman

Humans and AIs are often paired on decision tasks with the expectation of achieving complementary performance -- where the combination of human and AI outperforms either one alone.

DeepFake Detection Face Swapping

Autoformalize Mathematical Statements by Symbolic Equivalence and Semantic Consistency

1 code implementation28 Oct 2024 Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, Xiaoxing Ma

Autoformalization, the task of automatically translating natural language descriptions into a formal language, poses a significant challenge across various domains, especially in mathematics.

Math

LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction

no code implementations28 Oct 2024 Yanliang Jin, Yifan Wu, Yuan Gao, Shunqing Zhang, Shugong Xu, Cheng-Xiang Wang

The emergence of 6th generation (6G) mobile networks brings new challenges in supporting high-mobility communications, particularly in addressing the issue of channel aging.

Data Augmentation Prediction

CPFD: Confidence-aware Privileged Feature Distillation for Short Video Classification

no code implementations3 Oct 2024 Jinghao Shi, Xiang Shen, Kaili Zhao, Xuedong Wang, Vera Wen, Zixuan Wang, Yifan Wu, Zhixin Zhang

To integrate both features while maintaining efficiency and manageable resource costs, we present Confidence-aware Privileged Feature Distillation (CPFD), which empowers features of an end-to-end multi-modal model by adaptively distilling privileged features during training.

Video Classification

FBINeRF: Feature-Based Integrated Recurrent Network for Pinhole and Fisheye Neural Radiance Fields

no code implementations3 Aug 2024 Yifan Wu, Tianyi Cheng, Peixu Xin, Janusz Konrad

Furthermore, inaccurate depth initialization in DBARF results in erroneous geometric information affecting the overall convergence and quality of results.

3D Scene Reconstruction NeRF

ElicitationGPT: Text Elicitation Mechanisms via Language Models

no code implementations13 Jun 2024 Yifan Wu, Jason Hartline

Scoring rules evaluate probabilistic forecasts of an unknown state against the realized state and are a fundamental building block in the incentivized elicitation of information and the training of machine learning models.

Language Modeling Language Modelling +1

A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis

no code implementations23 May 2024 Yue Yang, Mona Gandhi, YuFei Wang, Yifan Wu, Michael S. Yao, Chris Callison-Burch, James C. Gee, Mark Yatskar

KnoBo uses retrieval-augmented language models to design an appropriate concept space paired with an automatic training procedure for recognizing the concept.

Medical Image Analysis

ChartInsights: Evaluating Multimodal Large Language Models for Low-Level Chart Question Answering

no code implementations11 May 2024 Yifan Wu, Lutao Yan, Leixian Shen, Yunhai Wang, Nan Tang, Yuyu Luo

To further explore the limitations of MLLMs in low-level ChartQA, we conduct experiments that alter visual elements of charts (e. g., changing color schemes, adding image noise) to assess their impact on the task effectiveness.

Chart Question Answering Question Answering

Calibration Error for Decision Making

no code implementations21 Apr 2024 Lunjia Hu, Yifan Wu

Calibration allows predictions to be reliably interpreted as probabilities by decision makers.

Decision Making

Neural Ordinary Differential Equation based Sequential Image Registration for Dynamic Characterization

no code implementations2 Apr 2024 Yifan Wu, Mengjin Dong, Rohit Jena, Chen Qin, James C. Gee

Leveraging Neural Ordinary Differential Equations (ODE) for registration, this extension work discusses how this framework can aid in the characterization of sequential biological processes.

Image Registration Medical Image Analysis

DD-RobustBench: An Adversarial Robustness Benchmark for Dataset Distillation

1 code implementation20 Mar 2024 Yifan Wu, Jiawei Du, Ping Liu, Yuewei Lin, Wei Xu, Wenqing Cheng

Dataset distillation is an advanced technique aimed at compressing datasets into significantly smaller counterparts, while preserving formidable training performance.

Adversarial Attack Adversarial Robustness +1

Ten computational challenges in human virome studies

no code implementations23 Feb 2024 Yifan Wu, Yousong Peng

In recent years, substantial advancements have been achieved in understanding the diversity of the human virome and its intricate roles in human health and diseases.

Diversity

A Decision Theoretic Framework for Measuring AI Reliance

no code implementations27 Jan 2024 Ziyang Guo, Yifan Wu, Jason Hartline, Jessica Hullman

We argue that the current definition of appropriate reliance used in such research lacks formal statistical grounding and can lead to contradictions.

Decision Making

Non-uniform Array and Frequency Spacing for Regularization-free Gridless DOA

no code implementations12 Jan 2024 Yifan Wu, Michael B. Wakin, Peter Gerstoft

The DOA is retrieved using a Vandermonde decomposition on the Toeplitz matrix obtained from the solution of the SDP.

Generating and Reweighting Dense Contrastive Patterns for Unsupervised Anomaly Detection

no code implementations26 Dec 2023 Songmin Dai, Yifan Wu, Xiaoqiang Li, xiangyang xue

Recent unsupervised anomaly detection methods often rely on feature extractors pretrained with auxiliary datasets or on well-crafted anomaly-simulated samples.

Unsupervised Anomaly Detection

COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics

no code implementations29 Nov 2023 Yifan Wu, Hayden Gunraj, Chi-en Amy Tai, Alexander Wong

The global ramifications of the COVID-19 pandemic remain significant, exerting persistent pressure on nations even three years after its initial outbreak.

Diversity

Self-guided Few-shot Semantic Segmentation for Remote Sensing Imagery Based on Large Vision Models

no code implementations22 Nov 2023 Xiyu Qi, Yifan Wu, Yongqiang Mao, Wenhui Zhang, Yidan Zhang

The Segment Anything Model (SAM) exhibits remarkable versatility and zero-shot learning abilities, owing largely to its extensive training data (SA-1B).

Few-Shot Semantic Segmentation Segmentation +2

NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene Dataset for Dietary Intake Estimation

no code implementations20 Nov 2023 Chi-en Amy Tai, Saeejith Nair, Olivia Markham, Matthew Keller, Yifan Wu, Yuhao Chen, Alexander Wong

Dietary intake estimation plays a crucial role in understanding the nutritional habits of individuals and populations, aiding in the prevention and management of diet-related health issues.

Diversity Management

The Role of Chain-of-Thought in Complex Vision-Language Reasoning Task

no code implementations15 Nov 2023 Yifan Wu, Pengchuan Zhang, Wenhan Xiong, Barlas Oguz, James C. Gee, Yixin Nie

The study explores the effectiveness of the Chain-of-Thought approach, known for its proficiency in language tasks by breaking them down into sub-tasks and intermediate steps, in improving vision-language tasks that demand sophisticated perception and reasoning.

Visual Reasoning

CoCA: Fusing Position Embedding with Collinear Constrained Attention in Transformers for Long Context Window Extending

1 code implementation15 Sep 2023 Shiyi Zhu, Jing Ye, Wei Jiang, Siqiao Xue, Qi Zhang, Yifan Wu, Jianguo Li

In fact, anomalous behaviors harming long context extrapolation exist between Rotary Position Embedding (RoPE) and vanilla self-attention unveiled by our work.

2k Position

NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches

no code implementations14 Sep 2023 Chi-en Amy Tai, Matthew Keller, Saeejith Nair, Yuhao Chen, Yifan Wu, Olivia Markham, Krish Parmar, Pengcheng Xi, Heather Keller, Sharon Kirkpatrick, Alexander Wong

Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images, but the lack of comprehensive datasets with diverse viewpoints, modalities and food annotations hinders the accuracy and realism of such methods.

Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge

no code implementations21 Apr 2023 Alexander Wong, Yifan Wu, Saad Abbasi, Saeejith Nair, Yuhao Chen, Mohammad Javad Shafiee

As such, the design of highly efficient multi-task deep neural network architectures tailored for computer vision tasks for robotic grasping on the edge is highly desired for widespread adoption in manufacturing environments.

Multi-Task Learning Robotic Grasping

Learning to Incentivize Information Acquisition: Proper Scoring Rules Meet Principal-Agent Model

no code implementations15 Mar 2023 Siyu Chen, Jibang Wu, Yifan Wu, Zhuoran Yang

Such a problem is modeled as a Stackelberg game between the principal and the agent, where the principal announces a scoring rule that specifies the payment, and then the agent then chooses an effort level that maximizes her own profit and reports the information.

scoring rule

Gridless DOA Estimation with Multiple Frequencies

no code implementations13 Jul 2022 Yifan Wu, Michael B. Wakin, Peter Gerstoft

Direction-of-arrival (DOA) estimation is widely applied in acoustic source localization.

Mixture Proportion Estimation and PU Learning: A Modern Approach

2 code implementations NeurIPS 2021 Saurabh Garg, Yifan Wu, Alex Smola, Sivaraman Balakrishnan, Zachary C. Lipton

Formally, this task is broken down into two subtasks: (i) Mixture Proportion Estimation (MPE) -- determining the fraction of positive examples in the unlabeled data; and (ii) PU-learning -- given such an estimate, learning the desired positive-versus-negative classifier.

On the Fairness of Swarm Learning in Skin Lesion Classification

no code implementations24 Sep 2021 Di Fan, Yifan Wu, Xiaoxiao Li

Distributed and collaborative learning is an approach to involve training models in massive, heterogeneous, and distributed data sources, also known as nodes.

Classification Edge-computing +3

NODEO: A Neural Ordinary Differential Equation Based Optimization Framework for Deformable Image Registration

no code implementations CVPR 2022 Yifan Wu, Tom Z. Jiahao, Jiancong Wang, Paul A. Yushkevich, M. Ani Hsieh, James C. Gee

Deformable image registration (DIR), aiming to find spatial correspondence between images, is one of the most critical problems in the domain of medical image analysis.

Image Registration Medical Image Analysis

A Pseudo Label-wise Attention Network for Automatic ICD Coding

no code implementations12 Jun 2021 Yifan Wu, Min Zeng, Ying Yu, Min Li

The label-wise attention mechanism is widely used in automatic ICD coding because it can assign weights to every word in full Electronic Medical Records (EMR) for different ICD codes.

Multi-Label Classification MUlTI-LABEL-ClASSIFICATION +1

Mixture Proportion Estimation and PU Learning:A Modern Approach

1 code implementation NeurIPS 2021 Saurabh Garg, Yifan Wu, Alex Smola, Sivaraman Balakrishnan, Zachary Chase Lipton

Formally, this task is broken down into two subtasks: (i) Mixture Proportion Estimation (MPE)---determining the fraction of positive examples in the unlabeled data; and (ii) PU-learning---given such an estimate, learning the desired positive-versus-negative classifier.

Unsupervised Learning of Multi-level Structures for Anomaly Detection

no code implementations25 Apr 2021 Songmin Dai, Jide Li, Lu Wang, Congcong Zhu, Yifan Wu, Xiaoqiang Li

This paper first introduces a novel method to generate anomalous data by breaking up global structures while preserving local structures of normal data at multiple levels.

All Anomaly Detection

On the Optimality of Batch Policy Optimization Algorithms

no code implementations6 Apr 2021 Chenjun Xiao, Yifan Wu, Tor Lattimore, Bo Dai, Jincheng Mei, Lihong Li, Csaba Szepesvari, Dale Schuurmans

First, we introduce a class of confidence-adjusted index algorithms that unifies optimistic and pessimistic principles in a common framework, which enables a general analysis.

Value prediction

Instabilities of Offline RL with Pre-Trained Neural Representation

no code implementations8 Mar 2021 Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, Sham M. Kakade

In offline reinforcement learning (RL), we seek to utilize offline data to evaluate (or learn) policies in scenarios where the data are collected from a distribution that substantially differs from that of the target policy to be evaluated.

Offline RL Reinforcement Learning (RL)

Estimating and Improving Fairness with Adversarial Learning

1 code implementation7 Mar 2021 Xiaoxiao Li, Ziteng Cui, Yifan Wu, Lin Gu, Tatsuya Harada

To tackle this issue, we propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.

Deep Learning Fairness +1

BridgeDPI: A Novel Graph Neural Network for Predicting Drug-Protein Interactions

1 code implementation29 Jan 2021 Yifan Wu, Min Gao, Min Zeng, Feiyang Chen, Min Li, Jie Zhang

Therefore, we hope to develop a novel supervised learning method to learn the PPAs and DDAs effectively and thereby improve the prediction performance of the specific task of DPI.

Drug Discovery Graph Neural Network

SSLIDE: Sound Source Localization for Indoors based on Deep Learning

no code implementations27 Oct 2020 Yifan Wu, Roshan Ayyalasomayajula, Michael J. Bianco, Dinesh Bharadia, Peter Gerstoft

This paper presents SSLIDE, Sound Source Localization for Indoors using DEep learning, which applies deep neural networks (DNNs) with encoder-decoder structure to localize sound sources with random positions in a continuous space.

Decoder Deep Learning +1

Quantization in Relative Gradient Angle Domain For Building Polygon Estimation

no code implementations10 Jul 2020 Yuhao Chen, Yifan Wu, Linlin Xu, Alexander Wong

In this paper, we leverage the performance of CNNs, and propose a module that uses prior knowledge of building corners to create angular and concise building polygons from CNN segmentation outputs.

Quantization

A Unified View of Label Shift Estimation

no code implementations NeurIPS 2020 Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, Zachary C. Lipton

Our contributions include (i) consistency conditions for MLLS, which include calibration of the classifier and a confusion matrix invertibility condition that BBSE also requires; (ii) a unified framework, casting BBSE as roughly equivalent to MLLS for a particular choice of calibration method; and (iii) a decomposition of MLLS's finite-sample error into terms reflecting miscalibration and estimation error.

Learning to Combat Compounding-Error in Model-Based Reinforcement Learning

no code implementations24 Dec 2019 Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, Martin Müller

Despite its potential to improve sample complexity versus model-free approaches, model-based reinforcement learning can fail catastrophically if the model is inaccurate.

Model-based Reinforcement Learning reinforcement-learning +2

Game Design for Eliciting Distinguishable Behavior

no code implementations NeurIPS 2019 Fan Yang, Liu Leqi, Yifan Wu, Zachary C. Lipton, Pradeep Ravikumar, William W. Cohen, Tom Mitchell

The ability to inferring latent psychological traits from human behavior is key to developing personalized human-interacting machine learning systems.

Diagnostic Game Design

Behavior Regularized Offline Reinforcement Learning

1 code implementation26 Nov 2019 Yifan Wu, George Tucker, Ofir Nachum

In reinforcement learning (RL) research, it is common to assume access to direct online interactions with the environment.

continuous-control Continuous Control +4

Enhanced generative adversarial network for 3D brain MRI super-resolution

no code implementations10 Jul 2019 Jiancong Wang, Yu-Hua Chen, Yifan Wu, Jianbo Shi, James Gee

Single image super-resolution (SISR) reconstruction for magnetic resonance imaging (MRI) has generated significant interest because of its potential to not only speed up imaging but to improve quantitative processing and analysis of available image data.

Generative Adversarial Network Image Super-Resolution +1

Stochastic Learning of Additive Second-Order Penalties with Applications to Fairness

no code implementations ICLR 2019 Heinrich Jiang, Yifan Wu, Ofir Nachum

In non-convex settings, the resulting problem may be difficult to solve as the Lagrangian is not guaranteed to have a deterministic saddle-point equilibrium.

Fairness

Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment

1 code implementation ICLR Workshop LLD 2019 Yifan Wu, Ezra Winston, Divyansh Kaushik, Zachary Lipton

Domain adaptation addresses the common problem when the target distribution generating our test data drifts from the source (training) distribution.

Domain Adaptation

Repetitive Motion Estimation Network: Recover cardiac and respiratory signal from thoracic imaging

no code implementations8 Nov 2018 Xiaoxiao Li, Vivek Singh, Yifan Wu, Klaus Kirchberg, James Duncan, Ankur Kapoor

Tracking organ motion is important in image-guided interventions, but motion annotations are not always easily available.

Motion Estimation

The Laplacian in RL: Learning Representations with Efficient Approximations

no code implementations ICLR 2019 Yifan Wu, George Tucker, Ofir Nachum

In this paper, we present a fully general and scalable method for approximating the eigenvectors of the Laplacian in a model-free RL context.

Reinforcement Learning Reinforcement Learning (RL) +1

Privacy-Protective-GAN for Face De-identification

no code implementations23 Jun 2018 Yifan Wu, Fan Yang, Haibin Ling

In this paper, we propose a new framework called Privacy-Protective-GAN (PP-GAN) that adapts GAN with novel verificator and regulator modules specially designed for the face de-identification problem to ensure generating de-identified output with retained structure similarity according to a single input.

De-identification Face Recognition

Generating Synthetic X-ray Images of a Person from the Surface Geometry

no code implementations CVPR 2018 Brian Teixeira, Vivek Singh, Terrence Chen, Kai Ma, Birgi Tamersoy, Yifan Wu, Elena Balashova, Dorin Comaniciu

Furthermore, the synthetic X-ray image is parametrized and can be manipulated by adjusting a set of body markers which are also generated during the X-ray image prediction.

Anatomy Anomaly Detection

Towards Understanding the Generalization Bias of Two Layer Convolutional Linear Classifiers with Gradient Descent

no code implementations13 Feb 2018 Yifan Wu, Barnabas Poczos, Aarti Singh

A major challenge in understanding the generalization of deep learning is to explain why (stochastic) gradient descent can exploit the network architecture to find solutions that have good generalization performance when using high capacity models.

Planar Object Tracking in the Wild: A Benchmark

no code implementations23 Mar 2017 Pengpeng Liang, Yifan Wu, Hu Lu, Liming Wang, Chunyuan Liao, Haibin Ling

In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment.

Homography Estimation Object +1

Conservative Bandits

no code implementations13 Feb 2016 Yifan Wu, Roshan Shariff, Tor Lattimore, Csaba Szepesvári

We consider both the stochastic and the adversarial settings, where we propose, natural, yet novel strategies and analyze the price for maintaining the constraints.

Online Learning with Gaussian Payoffs and Side Observations

no code implementations NeurIPS 2015 Yifan Wu, András György, Csaba Szepesvári

For the first time in the literature, we provide non-asymptotic problem-dependent lower bounds on the regret of any algorithm, which recover existing asymptotic problem-dependent lower bounds and finite-time minimax lower bounds available in the literature.

Cannot find the paper you are looking for? You can Submit a new open access paper.