no code implementations • 10 May 2022 • Wentao Yu, Yifei Shen, Hengtao He, Xianghao Yu, Jun Zhang, Khaled B. Letaief
We draw inspirations from fixed point theory to develop an efficient deep learning based channel estimator with adaptive complexity and linear convergence guarantee.
1 code implementation • 21 Mar 2022 • Yifei Shen, Jun Zhang, S. H. Song, Khaled B. Letaief
For design guidelines, we propose a unified framework that is applicable to general design problems in wireless networks, which includes graph modeling, neural architecture design, and theory-guided performance enhancement.
1 code implementation • 9 Mar 2022 • Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu, Di He, Tie-Yan Liu
This technical note describes the recent updates of Graphormer, including architecture design modifications, and the adaption to 3D molecular dynamics simulation.
no code implementations • 28 Feb 2022 • Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu, Di He, Tie-Yan Liu
This technical note describes the recent updates of Graphormer, including architecture design modifications, and the adaption to 3D molecular dynamics simulation.
no code implementations • 4 Jan 2022 • Qunxi Zhu, Yifei Shen, Dongsheng Li, Wei Lin
Continuous-depth neural networks, such as the Neural Ordinary Differential Equations (ODEs), have aroused a great deal of interest from the communities of machine learning and data science in recent years, which bridge the connection between deep neural networks and dynamical systems.
no code implementations • NeurIPS 2021 • Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, Dongsheng Li
To address these issues, we propose a RL-enhanced GNN explainer, RG-Explainer, which consists of three main components: starting point selection, iterative graph generation and stopping criteria learning.
2 code implementations • NeurIPS 2021 • Xinyang Jiang, Lu Liu, Caihua Shan, Yifei Shen, Xuanyi Dong, Dongsheng Li
In this paper, we consider a different data format for images: vector graphics.
no code implementations • 1 Oct 2021 • Yifan Ma, Yifei Shen, Xianghao Yu, Jun Zhang, S. H. Song, Khaled B. Letaief
Furthermore, such networks will vary dynamically in a significant way, which makes it intractable to develop comprehensive analytical models.
1 code implementation • 17 Aug 2021 • Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, Khaled B. Letaief, Dongsheng Li
In this paper, we endeavor to obtain a better understanding of GCN-based CF methods via the lens of graph signal processing.
no code implementations • 3 Aug 2021 • Yifan Ma, Yifei Shen, Xianghao Yu, Jun Zhang, S. H. Song, Khaled B. Letaief
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
no code implementations • 11 Jun 2021 • Bo Li, Yifei Shen, Yezhen Wang, Wenzhen Zhu, Colorado J. Reed, Jun Zhang, Dongsheng Li, Kurt Keutzer, Han Zhao
IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM.
1 code implementation • 4 Apr 2021 • He Wang, Yifei Shen, Ziyuan Wang, Dongsheng Li, Jun Zhang, Khaled B. Letaief, Jie Lu
In this paper, we investigate the decentralized statistical inference problem, where a network of agents cooperatively recover a (structured) vector from private noisy samples without centralized coordination.
1 code implementation • 15 Jul 2020 • Yifei Shen, Yuanming Shi, Jun Zhang, Khaled B. Letaief
In this paper, we propose to apply graph neural networks (GNNs) to solve large-scale radio resource management problems, supported by effective neural network architecture design and theoretical analysis.
no code implementations • 26 Apr 2020 • Ye Xue, Yifei Shen, Vincent Lau, Jun Zhang, Khaled B. Letaief
Specifically, we propose a novel $\ell_3$-norm-based formulation to recover the data without channel estimation.
1 code implementation • 24 Feb 2020 • Yifei Shen, Ye Xue, Jun Zhang, Khaled B. Letaief, Vincent Lau
Dictionary learning is a classic representation learning method that has been widely applied in signal processing and data analytics.
2 code implementations • 19 Jul 2019 • Yifei Shen, Yuanming Shi, Jun Zhang, Khaled B. Letaief
Specifically, a $K$-user interference channel is first modeled as a complete graph, where the quantitative information of wireless channels is incorporated as the features of the graph.
no code implementations • 18 Dec 2018 • Yifei Shen, Yuanming Shi, Jun Zhang, Khaled B. Letaief
To further address the task mismatch problem, we develop a transfer learning method via self-imitation in LORM, named LORM-TL, which can quickly adapt a pre-trained machine learning model to the new task with only a few additional unlabeled training samples.
no code implementations • 17 Nov 2018 • Yifei Shen, Yuanming Shi, Jun Zhang, Khaled B. Letaief
A unique advantage of the proposed method is that it can tackle the task mismatch issue with a few additional unlabeled training samples, which is especially important when transferring to large-size problems.