no code implementations • 23 Nov 2023 • Ruixuan Liu, Ming Hu, Zeke Xia, Jun Xia, Pengyu Zhang, Yihao Huang, Yang Liu, Mingsong Chen
On the one hand, to achieve model training in all the diverse clients, mobile computing systems can only use small low-performance models for collaborative learning.
no code implementations • 22 Aug 2023 • Yanxin Yang, Ming Hu, Yue Cao, Jun Xia, Yihao Huang, Yang Liu, Mingsong Chen
By using these trigger images, our approach eliminates poisoned models to ensure the updated global model is benign.
no code implementations • 21 Jul 2023 • Simiao Zhang, Jitao Bai, Menghong Guan, Yihao Huang, Yueling Zhang, Jun Sun, Geguang Pu
The results demonstrate that CFU can improve the classifier on multiple fairness metrics without sacrificing its utility.
no code implementations • 25 May 2023 • Yihao Huang, Yue Cao, Tianlin Li, Felix Juefei-Xu, Di Lin, Ivor W. Tsang, Yang Liu, Qing Guo
Second, we extend representative adversarial attacks against SAM and study the influence of different prompts on robustness.
no code implementations • 18 May 2023 • Di Yang, Yihao Huang, Qing Guo, Felix Juefei-Xu, Ming Hu, Yang Liu, Geguang Pu
The adversarial patch attack aims to fool image classifiers within a bounded, contiguous region of arbitrary changes, posing a real threat to computer vision systems (e. g., autonomous driving, content moderation, biometric authentication, medical imaging) in the physical world.
no code implementations • 18 May 2023 • Yihao Huang, Qing Guo, Felix Juefei-Xu
Although recent personalization methods have democratized high-resolution image synthesis by enabling swift concept acquisition with minimal examples and lightweight computation, they also present an exploitable avenue for high accessible backdoor attacks.
no code implementations • 18 May 2023 • Ming Hu, Zhihao Yue, Zhiwei Ling, Yihao Huang, Cheng Chen, Xian Wei, Yang Liu, Mingsong Chen
Although Federated Learning (FL) enables global model training across clients without compromising their raw data, existing Federated Averaging (FedAvg)-based methods suffer from the problem of low inference performance, especially for unevenly distributed data among clients.
no code implementations • CVPR 2023 • Yang Hou, Qing Guo, Yihao Huang, Xiaofei Xie, Lei Ma, Jianjun Zhao
Second, we find that the statistical differences between natural and DeepFake images are positively associated with the distribution shifting between the two kinds of images, and we propose to use a distribution-aware loss to guide the optimization of different degradations.
no code implementations • 22 Nov 2022 • Ming Hu, Zeke Xia, Zhihao Yue, Jun Xia, Yihao Huang, Yang Liu, Mingsong Chen
Unlike traditional FL, the cloud server of GitFL maintains a master model (i. e., the global model) together with a set of branch models indicating the trained local models committed by selected devices, where the master model is updated based on both all the pushed branch models and their version information, and only the branch models after the pull operation are dispatched to devices.
no code implementations • 15 Oct 2022 • Ming Hu, Peiheng Zhou, Zhihao Yue, Zhiwei Ling, Yihao Huang, Yang Liu, Mingsong Chen
Due to the remarkable performance in preserving data privacy for decentralized data scenarios, Federated Learning (FL) has been considered as a promising distributed machine learning paradigm to deal with data silos problems.
no code implementations • 17 Jan 2022 • JiaYi Zhu, Qing Guo, Felix Juefei-Xu, Yihao Huang, Yang Liu, Geguang Pu
Modern face recognition systems (FRS) still fall short when the subjects are wearing facial masks, a common theme in the age of respiratory pandemics.
no code implementations • 16 Jan 2022 • Yihao Huang, Liangru Sun, Qing Guo, Felix Juefei-Xu, JiaYi Zhu, Jincao Feng, Yang Liu, Geguang Pu
To obtain adversarial examples with a high attack success rate, we propose unconstrained enhancement in terms of the light and shade relationship in images.
no code implementations • 25 Nov 2021 • Yihao Huang, Felix Juefei-Xu, Qing Guo, Geguang Pu, Yang Liu
Bokeh effect is a natural shallow depth-of-field phenomenon that blurs the out-of-focus part in photography.
no code implementations • 14 Jul 2021 • Yihao Huang, Qing Guo, Felix Juefei-Xu, Lei Ma, Weikai Miao, Yang Liu, Geguang Pu
To this end, we first comprehensively investigate two kinds of pixel denoising methods for adversarial robustness enhancement (i. e., existing additive-based and unexplored filtering-based methods) under the loss functions of image-level and semantic-level, respectively, showing that pixel-wise filtering can obtain much higher image quality (e. g., higher PSNR) as well as higher robustness (e. g., higher accuracy on adversarial examples) than existing pixel-wise additive-based method.
1 code implementation • 27 Feb 2021 • Felix Juefei-Xu, Run Wang, Yihao Huang, Qing Guo, Lei Ma, Yang Liu
To fill this gap, in this paper, we provide a comprehensive overview and detailed analysis of the research work on the topic of DeepFake generation, DeepFake detection as well as evasion of DeepFake detection, with more than 318 research papers carefully surveyed.
no code implementations • 19 Sep 2020 • Yihao Huang, Felix Juefei-Xu, Qing Guo, Yang Liu, Geguang Pu
We first demonstrate that frequency-domain notch filtering, although famously shown to be effective in removing periodic noise in the spatial domain, is infeasible for our task at hand due to the manual designs required for the notch filters.
1 code implementation • 13 Jun 2020 • Yihao Huang, Felix Juefei-Xu, Run Wang, Qing Guo, Lei Ma, Xiaofei Xie, Jianwen Li, Weikai Miao, Yang Liu, Geguang Pu
At this moment, GAN-based image generation methods are still imperfect, whose upsampling design has limitations in leaving some certain artifact patterns in the synthesized image.
no code implementations • 27 Jan 2020 • Yihao Huang, Felix Juefei-Xu, Qing Guo, Yang Liu, Geguang Pu
In this work, we investigate the architecture of existing GAN-based face manipulation methods and observe that the imperfection of upsampling methods therewithin could be served as an important asset for GAN-synthesized fake image detection and forgery localization.
no code implementations • 9 Dec 2019 • Run Wang, Felix Juefei-Xu, Qing Guo, Yihao Huang, Xiaofei Xie, Lei Ma, Yang Liu
In this paper, we investigate and introduce a new type of adversarial attack to evade FR systems by manipulating facial content, called \textbf{\underline{a}dversarial \underline{mor}phing \underline{a}ttack} (a. k. a.
no code implementations • 13 Sep 2019 • Run Wang, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Yihao Huang, Jian Wang, Yang Liu
In recent years, generative adversarial networks (GANs) and its variants have achieved unprecedented success in image synthesis.