1 code implementation • 10 Jan 2024 • Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric Xing, Furong Huang, Hao liu, Heng Ji, Hongyi Wang, huan zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao
This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions.
no code implementations • EMNLP 2021 • Jieren Deng, Chenghong Wang, Xianrui Meng, Yijue Wang, Ji Li, Sheng Lin, Shuo Han, Fei Miao, Sanguthevar Rajasekaran, Caiwen Ding
In this work, we consider the problem of designing secure and efficient federated learning (FL) frameworks.
no code implementations • ACL 2022 • Shaoyi Huang, Dongkuan Xu, Ian E. H. Yen, Yijue Wang, Sung-En Chang, Bingbing Li, Shiyang Chen, Mimi Xie, Sanguthevar Rajasekaran, Hang Liu, Caiwen Ding
Conventional wisdom in pruning Transformer-based language models is that pruning reduces the model expressiveness and thus is more likely to underfit rather than overfit.
1 code implementation • Findings (EMNLP) 2021 • Jieren Deng, Yijue Wang, Ji Li, Chao Shang, Cao Qin, Hang Liu, Sanguthevar Rajasekaran, Caiwen Ding
In this paper, as the first attempt, we formulate the gradient attack problem on the Transformer-based language models and propose a gradient attack algorithm, TAG, to reconstruct the local training data.
Federated Learning
Cryptography and Security
no code implementations • 14 Sep 2020 • Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang Liu, Caiwen Ding, Sanguthevar Rajasekaran
Distributed learning such as federated learning or collaborative learning enables model training on decentralized data from users and only collects local gradients, where data is processed close to its sources for data privacy.
no code implementations • 28 Aug 2020 • Yijue Wang, Chenghong Wang, Zigeng Wang, Shanglin Zhou, Hang Liu, Jinbo Bi, Caiwen Ding, Sanguthevar Rajasekaran
The large model size, high computational operations, and vulnerability against membership inference attack (MIA) have impeded deep learning or deep neural networks (DNNs) popularity, especially on mobile devices.