Search Results for author: Yike Guo

Found 110 papers, 40 papers with code

Improving Deep Embedded Clustering via Learning Cluster-level Representations

no code implementations COLING 2022 Qing Yin, Zhihua Wang, Yunya Song, Yida Xu, Shuai Niu, Liang Bai, Yike Guo, Xian Yang

In this paper, we propose a novel DEC model, which we named the deep embedded clustering model with cluster-level representation learning (DECCRL) to jointly learn cluster and instance level representations.

Clustering Contrastive Learning +2

SINGER: Vivid Audio-driven Singing Video Generation with Multi-scale Spectral Diffusion Model

no code implementations4 Dec 2024 Yan Li, Ziya Zhou, Zhiqiang Wang, Wei Xue, Wenhan Luo, Yike Guo

The differences between human talking and singing limit the performance of existing talking face video generation models when applied to singing.

Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data

no code implementations2 Dec 2024 Bo Pang, Sibo Cheng, Yuhan Huang, Yufang Jin, Yike Guo, I. Colin Prentice, Sandy P. Harrison, Rossella Arcucci

Here, we develop a deep-learning-based predictive model, Fire-Image-DenseNet (FIDN), that uses spatial features derived from both near real-time and reanalysis data on the environmental and meteorological drivers of wildfire.

Computational Efficiency SSIM

EVA: An Embodied World Model for Future Video Anticipation

no code implementations20 Oct 2024 Xiaowei Chi, Hengyuan Zhang, Chun-Kai Fan, Xingqun Qi, Rongyu Zhang, Anthony Chen, Chi-Min Chan, Wei Xue, Wenhan Luo, Shanghang Zhang, Yike Guo

Yet, applying the world model for accurate video prediction is quite challenging due to the complex and dynamic intentions of the various scenes in practice.

Language Modelling Mixed Reality +3

Both Ears Wide Open: Towards Language-Driven Spatial Audio Generation

no code implementations14 Oct 2024 Peiwen Sun, Sitong Cheng, Xiangtai Li, Zhen Ye, Huadai Liu, Honggang Zhang, Wei Xue, Yike Guo

However, when it comes to stereo audio generation, the soundscapes often have a complex scene of multiple objects and directions.

Audio Generation multimodal generation

You Know What I'm Saying: Jailbreak Attack via Implicit Reference

1 code implementation4 Oct 2024 Tianyu Wu, Lingrui Mei, Ruibin Yuan, Lujun Li, Wei Xue, Yike Guo

While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives.

Language Modelling Large Language Model

Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model

1 code implementation30 Aug 2024 Zhen Ye, Peiwen Sun, Jiahe Lei, Hongzhan Lin, Xu Tan, Zheqi Dai, Qiuqiang Kong, Jianyi Chen, Jiahao Pan, Qifeng Liu, Yike Guo, Wei Xue

By enhancing the semantic ability of the codec, X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications, including music and sound generation.

Audio Compression Audio Generation +4

AgentMonitor: A Plug-and-Play Framework for Predictive and Secure Multi-Agent Systems

1 code implementation27 Aug 2024 Chi-Min Chan, Jianxuan Yu, Weize Chen, Chunyang Jiang, Xinyu Liu, Weijie Shi, Zhiyuan Liu, Wei Xue, Yike Guo

However, configuring an MAS for a task remains challenging, with performance only observable post-execution.

Importance Weighting Can Help Large Language Models Self-Improve

no code implementations19 Aug 2024 Chunyang Jiang, Chi-Min Chan, Wei Xue, Qifeng Liu, Yike Guo

Large language models (LLMs) have shown remarkable capability in numerous tasks and applications.

Language Modelling valid

NoRA: Nested Low-Rank Adaptation for Efficient Fine-Tuning Large Models

no code implementations18 Aug 2024 Cheng Lin, Lujun Li, Dezhi Li, Jie Zou, Wei Xue, Yike Guo

This approach allows the model to more precisely adapt to specific tasks while maintaining a compact parameter space.

Model Optimization parameter-efficient fine-tuning

Can LLMs "Reason" in Music? An Evaluation of LLMs' Capability of Music Understanding and Generation

no code implementations31 Jul 2024 Ziya Zhou, Yuhang Wu, Zhiyue Wu, Xinyue Zhang, Ruibin Yuan, Yinghao Ma, Lu Wang, Emmanouil Benetos, Wei Xue, Yike Guo

Yet scant research explores the details of how these LLMs perform on advanced music understanding and conditioned generation, especially from the multi-step reasoning perspective, which is a critical aspect in the conditioned, editable, and interactive human-computer co-creation process.

MMTrail: A Multimodal Trailer Video Dataset with Language and Music Descriptions

1 code implementation30 Jul 2024 Xiaowei Chi, Yatian Wang, Aosong Cheng, Pengjun Fang, Zeyue Tian, Yingqing He, Zhaoyang Liu, Xingqun Qi, Jiahao Pan, Rongyu Zhang, Mengfei Li, Ruibin Yuan, Yanbing Jiang, Wei Xue, Wenhan Luo, Qifeng Chen, Shanghang Zhang, Qifeng Liu, Yike Guo

To fulfill this gap, we present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions, and 2M high-quality clips with multimodal captions.

Audio Generation Image to Video Generation +2

Discovering symbolic expressions with parallelized tree search

1 code implementation5 Jul 2024 Kai Ruan, Ze-Feng Gao, Yike Guo, Hao Sun, Ji-Rong Wen, Yang Liu

Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.

Equation Discovery regression

Multi-View Large Reconstruction Model via Geometry-Aware Positional Encoding and Attention

no code implementations11 Jun 2024 Mengfei Li, Xiaoxiao Long, Yixun Liang, Weiyu Li, YuAn Liu, Peng Li, Wenhan Luo, Wenping Wang, Yike Guo

Despite recent advancements in the Large Reconstruction Model (LRM) demonstrating impressive results, when extending its input from single image to multiple images, it exhibits inefficiencies, subpar geometric and texture quality, as well as slower convergence speed than expected.

3D Reconstruction

Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training

no code implementations24 May 2024 Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo, Jie Fu

For example, compared to a conventionally trained 7B model using 300B tokens, our $G_{\text{stack}}$ model converges to the same loss with 194B tokens, resulting in a 54. 6\% speedup.

Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention

no code implementations19 May 2024 Peng Li, YuAn Liu, Xiaoxiao Long, Feihu Zhang, Cheng Lin, Mengfei Li, Xingqun Qi, Shanghang Zhang, Wenhan Luo, Ping Tan, Wenping Wang, Qifeng Liu, Yike Guo

Specifically, these methods assume that the input images should comply with a predefined camera type, e. g. a perspective camera with a fixed focal length, leading to distorted shapes when the assumption fails.

FastSAG: Towards Fast Non-Autoregressive Singing Accompaniment Generation

no code implementations13 May 2024 Jianyi Chen, Wei Xue, Xu Tan, Zhen Ye, Qifeng Liu, Yike Guo

By intensive experimental studies, we demonstrate that the proposed method can generate better samples than SingSong, and accelerate the generation by at least 30 times.

ComposerX: Multi-Agent Symbolic Music Composition with LLMs

1 code implementation28 Apr 2024 Qixin Deng, Qikai Yang, Ruibin Yuan, Yipeng Huang, Yi Wang, Xubo Liu, Zeyue Tian, Jiahao Pan, Ge Zhang, Hanfeng Lin, Yizhi Li, Yinghao Ma, Jie Fu, Chenghua Lin, Emmanouil Benetos, Wenwu Wang, Guangyu Xia, Wei Xue, Yike Guo

Music composition represents the creative side of humanity, and itself is a complex task that requires abilities to understand and generate information with long dependency and harmony constraints.

In-Context Learning Music Generation

FlashSpeech: Efficient Zero-Shot Speech Synthesis

1 code implementation23 Apr 2024 Zhen Ye, Zeqian Ju, Haohe Liu, Xu Tan, Jianyi Chen, Yiwen Lu, Peiwen Sun, Jiahao Pan, Weizhen Bian, Shulin He, Wei Xue, Qifeng Liu, Yike Guo

The generation processes of FlashSpeech can be achieved efficiently with one or two sampling steps while maintaining high audio quality and high similarity to the audio prompt for zero-shot speech generation.

Speech Synthesis Voice Conversion

RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation

no code implementations31 Mar 2024 Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, Jie Fu

To this end, we propose learning to Refine Query for Retrieval Augmented Generation (RQ-RAG) in this paper, endeavoring to enhance the model by equipping it with capabilities for explicit rewriting, decomposition, and disambiguation.

In-Context Learning RAG +2

Data and Physics driven Deep Learning Models for Fast MRI Reconstruction: Fundamentals and Methodologies

no code implementations29 Jan 2024 Jiahao Huang, Yinzhe Wu, Fanwen Wang, Yingying Fang, Yang Nan, Cagan Alkan, Daniel Abraham, Congyu Liao, Lei Xu, Zhifan Gao, Weiwen Wu, Lei Zhu, Zhaolin Chen, Peter Lally, Neal Bangerter, Kawin Setsompop, Yike Guo, Daniel Rueckert, Ge Wang, Guang Yang

Magnetic Resonance Imaging (MRI) is a pivotal clinical diagnostic tool, yet its extended scanning times often compromise patient comfort and image quality, especially in volumetric, temporal and quantitative scans.

Federated Learning MRI Reconstruction

CoMoSVC: Consistency Model-based Singing Voice Conversion

no code implementations3 Jan 2024 Yiwen Lu, Zhen Ye, Wei Xue, Xu Tan, Qifeng Liu, Yike Guo

The diffusion-based Singing Voice Conversion (SVC) methods have achieved remarkable performances, producing natural audios with high similarity to the target timbre.

Voice Conversion

Freeze the backbones: A Parameter-Efficient Contrastive Approach to Robust Medical Vision-Language Pre-training

no code implementations2 Jan 2024 Jiuming Qin, Che Liu, Sibo Cheng, Yike Guo, Rossella Arcucci

Modern healthcare often utilises radiographic images alongside textual reports for diagnostics, encouraging the use of Vision-Language Self-Supervised Learning (VL-SSL) with large pre-trained models to learn versatile medical vision representations.

Image Classification Image Segmentation +5

Weakly-Supervised Emotion Transition Learning for Diverse 3D Co-speech Gesture Generation

no code implementations CVPR 2024 Xingqun Qi, Jiahao Pan, Peng Li, Ruibin Yuan, Xiaowei Chi, Mengfei Li, Wenhan Luo, Wei Xue, Shanghang Zhang, Qifeng Liu, Yike Guo

In addition, the lack of large-scale available datasets with emotional transition speech and corresponding 3D human gestures also limits the addressing of this task.

Audio inpainting Gesture Generation

M$^{2}$Chat: Empowering VLM for Multimodal LLM Interleaved Text-Image Generation

1 code implementation29 Nov 2023 Xiaowei Chi, Rongyu Zhang, Zhengkai Jiang, Yijiang Liu, Yatian Wang, Xingqun Qi, Wenhan Luo, Peng Gao, Shanghang Zhang, Qifeng Liu, Yike Guo

Moreover, to further enhance the effectiveness of $M^{3}Adapter$ while preserving the coherence of semantic context comprehension, we introduce a two-stage $M^{3}FT$ fine-tuning strategy.

Image Generation Language Modelling +1

AI Alignment: A Comprehensive Survey

no code implementations30 Oct 2023 Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan, Zhonghao He, Jiayi Zhou, Zhaowei Zhang, Fanzhi Zeng, Kwan Yee Ng, Juntao Dai, Xuehai Pan, Aidan O'Gara, Yingshan Lei, Hua Xu, Brian Tse, Jie Fu, Stephen Mcaleer, Yaodong Yang, Yizhou Wang, Song-Chun Zhu, Yike Guo, Wen Gao

The former aims to make AI systems aligned via alignment training, while the latter aims to gain evidence about the systems' alignment and govern them appropriately to avoid exacerbating misalignment risks.

Survey

Efficient deep data assimilation with sparse observations and time-varying sensors

1 code implementation24 Oct 2023 Sibo Cheng, Che Liu, Yike Guo, Rossella Arcucci

We introduce a novel variational DA scheme, named Voronoi-tessellation Inverse operator for VariatIonal Data assimilation (VIVID), that incorporates a DL inverse operator into the assimilation objective function.

zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning

no code implementations4 Oct 2023 Zhipeng Wang, Nanqing Dong, Jiahao Sun, William Knottenbelt, Yike Guo

Federated learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator.

Federated Learning

Continual Learning with Dirichlet Generative-based Rehearsal

no code implementations13 Sep 2023 Min Zeng, Wei Xue, Qifeng Liu, Yike Guo

Recent advancements in data-driven task-oriented dialogue systems (ToDs) struggle with incremental learning due to computational constraints and time-consuming issues.

Continual Learning Incremental Learning +7

Video-Instrument Synergistic Network for Referring Video Instrument Segmentation in Robotic Surgery

no code implementations18 Aug 2023 Hongqiu Wang, Lei Zhu, Guang Yang, Yike Guo, Shichen Zhang, Bo Xu, Yueming Jin

Our method is verified on these datasets, and experimental results exhibit that the VIS-Net can significantly outperform existing state-of-the-art referring segmentation methods.

Robot Navigation Segmentation

A generative model for surrogates of spatial-temporal wildfire nowcasting

no code implementations5 Aug 2023 Sibo Cheng, Yike Guo, Rossella Arcucci

The model is tested in the ecoregion of a recent massive wildfire event in California, known as the Chimney fire.

Temporal Sequences

On the Effectiveness of Speech Self-supervised Learning for Music

no code implementations11 Jul 2023 Yinghao Ma, Ruibin Yuan, Yizhi Li, Ge Zhang, Xingran Chen, Hanzhi Yin, Chenghua Lin, Emmanouil Benetos, Anton Ragni, Norbert Gyenge, Ruibo Liu, Gus Xia, Roger Dannenberg, Yike Guo, Jie Fu

Our findings suggest that training with music data can generally improve performance on MIR tasks, even when models are trained using paradigms designed for speech.

Information Retrieval Music Information Retrieval +2

LyricWhiz: Robust Multilingual Zero-shot Lyrics Transcription by Whispering to ChatGPT

1 code implementation29 Jun 2023 Le Zhuo, Ruibin Yuan, Jiahao Pan, Yinghao Ma, Yizhi Li, Ge Zhang, Si Liu, Roger Dannenberg, Jie Fu, Chenghua Lin, Emmanouil Benetos, Wei Xue, Yike Guo

We introduce LyricWhiz, a robust, multilingual, and zero-shot automatic lyrics transcription method achieving state-of-the-art performance on various lyrics transcription datasets, even in challenging genres such as rock and metal.

Automatic Lyrics Transcription Language Modelling +3

Interactive Natural Language Processing

no code implementations22 May 2023 Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi, Wangchunshu Zhou, Shaochun Hao, Guangzheng Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen, Qingqing Zhu, Zhenzhu Yang, Adam Nik, Qi Liu, Chenghua Lin, Shi Wang, Ruibo Liu, Wenhu Chen, Ke Xu, Dayiheng Liu, Yike Guo, Jie Fu

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence.

Decision Making

NAS-FM: Neural Architecture Search for Tunable and Interpretable Sound Synthesis based on Frequency Modulation

no code implementations22 May 2023 Zhen Ye, Wei Xue, Xu Tan, Qifeng Liu, Yike Guo

Since expert knowledge is hard to acquire, it hinders the flexibility to quickly design and tune digital synthesizers for diverse sounds.

Neural Architecture Search

Long-lead forecasts of wintertime air stagnation index in southern China using oceanic memory effects

no code implementations16 May 2023 Chenhong Zhou, Xiaorui Zhang, Meng Gao, Shanshan Liu, Yike Guo, Jie Chen

Stagnant weather condition is one of the major contributors to air pollution as it is favorable for the formation and accumulation of pollutants.

Management

CoMoSpeech: One-Step Speech and Singing Voice Synthesis via Consistency Model

1 code implementation11 May 2023 Zhen Ye, Wei Xue, Xu Tan, Jie Chen, Qifeng Liu, Yike Guo

In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality.

Denoising Singing Voice Synthesis +2

Bayesian at heart: Towards autonomic outflow estimation via generative state-space modelling of heart rate dynamics

1 code implementation8 Mar 2023 Fernando E. Rosas, Diego Candia-Rivera, Andrea I Luppi, Yike Guo, Pedro A. M. Mediano

Recent research is revealing how cognitive processes are supported by a complex interplay between the brain and the rest of the body, which can be investigated by the analysis of physiological features such as breathing rhythms, heart rate, and skin conductance.

Bayesian Inference Decision Making

Pathway to Future Symbiotic Creativity

no code implementations18 Aug 2022 Yike Guo, Qifeng Liu, Jie Chen, Wei Xue, Jie Fu, Henrik Jensen, Fernando Rosas, Jeffrey Shaw, Xing Wu, Jiji Zhang, Jianliang Xu

This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation.

Philosophy

A Dual-Masked Auto-Encoder for Robust Motion Capture with Spatial-Temporal Skeletal Token Completion

1 code implementation15 Jul 2022 Junkun Jiang, Jie Chen, Yike Guo

In order to demonstrate the proposed model's capability in dealing with severe data loss scenarios, we contribute a high-accuracy and challenging motion capture dataset of multi-person interactions with severe occlusion.

Suggestive Annotation of Brain MR Images with Gradient-guided Sampling

no code implementations2 Jun 2022 Chengliang Dai, Shuo Wang, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai

We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation.

Brain Segmentation Image Segmentation +3

Medical Scientific Table-to-Text Generation with Human-in-the-Loop under the Data Sparsity Constraint

no code implementations24 May 2022 Heng-Yi Wu, Jingqing Zhang, Julia Ive, Tong Li, Vibhor Gupta, Bingyuan Chen, Yike Guo

Structured (tabular) data in the preclinical and clinical domains contains valuable information about individuals and an efficient table-to-text summarization system can drastically reduce manual efforts to condense this data into reports.

Data Augmentation Table-to-Text Generation +1

A Scalable Workflow to Build Machine Learning Classifiers with Clinician-in-the-Loop to Identify Patients in Specific Diseases

no code implementations18 May 2022 Jingqing Zhang, Atri Sharma, Luis Bolanos, Tong Li, Ashwani Tanwar, Vibhor Gupta, Yike Guo

This paper proposes a scalable workflow which leverages both structured data and unstructured textual notes from EHRs with techniques including NLP, AutoML and Clinician-in-the-Loop mechanism to build machine learning classifiers to identify patients at scale with given diseases, especially those who might currently be miscoded or missed by ICD codes.

AutoML Specificity

Unsupervised Numerical Reasoning to Extract Phenotypes from Clinical Text by Leveraging External Knowledge

no code implementations19 Apr 2022 Ashwani Tanwar, Jingqing Zhang, Julia Ive, Vibhor Gupta, Yike Guo

Extracting phenotypes from clinical text has been shown to be useful for a variety of clinical use cases such as identifying patients with rare diseases.

Word Embeddings

Receding Neuron Importances for Structured Pruning

no code implementations13 Apr 2022 Mihai Suteu, Yike Guo

To tackle this issue, we introduce a simple BatchNorm variation with bounded scaling parameters, based on which we design a novel regularisation term that suppresses only neurons with low importance.

Label Dependent Attention Model for Disease Risk Prediction Using Multimodal Electronic Health Records

1 code implementation18 Jan 2022 Shuai Niu, Qing Yin, Yunya Song, Yike Guo, Xian Yang

In this paper, we propose a label dependent attention model LDAM to 1) improve the interpretability by exploiting Clinical-BERT (a biomedical language model pre-trained on a large clinical corpus) to encode biomedically meaningful features and labels jointly; 2) extend the idea of joint embedding to the processing of time-series data, and develop a multi-modal learning framework for integrating heterogeneous information from medical notes and time-series health status indicators.

Language Modelling Time Series +1

Label-dependent and event-guided interpretable disease risk prediction using EHRs

1 code implementation18 Jan 2022 Shuai Niu, Yunya Song, Qing Yin, Yike Guo, Xian Yang

Thirdly, both label-dependent and event-guided representations are integrated to make a robust prediction, in which the interpretability is enabled by the attention weights over words from medical notes.

QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results

1 code implementation19 Dec 2021 Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Datwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gomez, Pablo Arbelaez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-min Pei, Murat AK, Sarahi Rosas-Gonzalez, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Lofstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh McHugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-Andre Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation.

Benchmarking Brain Tumor Segmentation +5

OmiTrans: generative adversarial networks based omics-to-omics translation framework

1 code implementation27 Nov 2021 XiaoYu Zhang, Yike Guo

With the rapid development of high-throughput experimental technologies, different types of omics (e. g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) data can be produced from clinical samples.

Deep Learning Image-to-Image Translation +1

Clinical Utility of the Automatic Phenotype Annotation in Unstructured Clinical Notes: ICU Use Cases

no code implementations24 Jul 2021 Jingqing Zhang, Luis Bolanos, Ashwani Tanwar, Julia Ive, Vibhor Gupta, Yike Guo

We propose the automatic annotation of phenotypes from clinical notes as a method to capture essential information, which is complementary to typically used vital signs and laboratory test results, to predict outcomes in the Intensive Care Unit (ICU).

Decompensation

Joint Motion Correction and Super Resolution for Cardiac Segmentation via Latent Optimisation

no code implementations8 Jul 2021 Shuo Wang, Chen Qin, Nicolo Savioli, Chen Chen, Declan O'Regan, Stuart Cook, Yike Guo, Daniel Rueckert, Wenjia Bai

In cardiac magnetic resonance (CMR) imaging, a 3D high-resolution segmentation of the heart is essential for detailed description of its anatomical structures.

Anatomy Cardiac Segmentation +2

XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data

2 code implementations26 May 2021 Eloise Withnell, XiaoYu Zhang, Kai Sun, Yike Guo

To the best of our knowledge, XOmiVAE is one of the first activation level-based interpretable deep learning models explaining novel clusters generated by VAE.

Cancer Classification Classification +3

Adversarial autoencoders and adversarial LSTM for improved forecasts of urban air pollution simulations

1 code implementation13 Apr 2021 César Quilodrán-Casas, Rossella Arcucci, Laetitia Mottet, Yike Guo, Christopher Pain

Our two-step method integrates a Principal Components Analysis (PCA) based adversarial autoencoder (PC-AAE) with adversarial Long short-term memory (LSTM) networks.

Time Series Time Series Analysis

Product semantics translation from brain activity via adversarial learning

no code implementations29 Mar 2021 Pan Wang, Zhifeng Gong, Shuo Wang, Hao Dong, Jialu Fan, Ling Li, Peter Childs, Yike Guo

To modify a design semantic of a given product from personalised brain activity via adversarial learning, in this work, we propose a deep generative transformation model to modify product semantics from the brain signal.

EEG Translation

Verifying Design through Generative Visualization of Neural Activities

no code implementations28 Mar 2021 Pan Wang, Danlin Peng, Simiao Yu, Chao Wu, Peter Childs, Yike Guo, Ling Li

A recurrent neural network is used as the encoder to learn latent representation from electroencephalogram (EEG) signals, recorded while subjects looked at 50 categories of images.

EEG Generative Adversarial Network

A General Framework for Revealing Human Mind with auto-encoding GANs

no code implementations10 Feb 2021 Pan Wang, Rui Zhou, Shuo Wang, Ling Li, Wenjia Bai, Jialu Fan, Chunlin Li, Peter Childs, Yike Guo

For this reason, we propose an end-to-end brain decoding framework which translates brain activity into an image by latent space alignment.

Brain Decoding

OmiEmbed: a unified multi-task deep learning framework for multi-omics data

1 code implementation3 Feb 2021 XiaoYu Zhang, Yuting Xing, Kai Sun, Yike Guo

To tackle this problem and pave the way for machine learning aided precision medicine, we proposed a unified multi-task deep learning framework named OmiEmbed to capture biomedical information from high-dimensional omics data with the deep embedding and downstream task modules.

BIG-bench Machine Learning Decision Making +2

A Blockchain-based Trust System for Decentralised Applications: When trustless needs trust

no code implementations26 Jan 2021 Nguyen Truong, Gyu Myoung Lee, Kai Sun, Florian Guitton, Yike Guo

Blockchain technology has been envisaged to commence an era of decentralised applications and services (DApps) without the need for a trusted intermediary.

Cryptography and Security Distributed, Parallel, and Cluster Computing

Adversarially trained LSTMs on reduced order models of urban air pollution simulations

no code implementations5 Jan 2021 César Quilodrán-Casas, Rossella Arcucci, Christopher Pain, Yike Guo

This adversarially trained LSTM-based approach is used on the ROM in order to produce faster forecasts of the air pollution tracer.

Privacy Preservation in Federated Learning: An insightful survey from the GDPR Perspective

no code implementations10 Nov 2020 Nguyen Truong, Kai Sun, Siyao Wang, Florian Guitton, Yike Guo

Furthermore, in the era of the Internet of Things and big data in which data is essentially distributed, transferring a vast amount of data to a data centre for processing seems to be a cumbersome solution.

Federated Learning Privacy Preserving

Suggestive Annotation of Brain Tumour Images with Gradient-guided Sampling

no code implementations26 Jun 2020 Chengliang Dai, Shuo Wang, Yuanhan Mo, Kaichen Zhou, Elsa Angelini, Yike Guo, Wenjia Bai

Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks.

BIG-bench Machine Learning Image Segmentation +3

Deep Generative Model-based Quality Control for Cardiac MRI Segmentation

no code implementations23 Jun 2020 Shuo Wang, Giacomo Tarroni, Chen Qin, Yuanhan Mo, Chengliang Dai, Chen Chen, Ben Glocker, Yike Guo, Daniel Rueckert, Wenjia Bai

Our approach provides a real-time and model-agnostic quality control for cardiac MRI segmentation, which has the potential to be integrated into clinical image analysis workflows.

Image Segmentation MRI segmentation +2

An Epidemiological Modelling Approach for Covid19 via Data Assimilation

1 code implementation25 Apr 2020 Philip Nadler, Shuo Wang, Rossella Arcucci, Xian Yang, Yike Guo

We compare and discuss model results which conducts updates as new observations become available.

Efficient Deep Representation Learning by Adaptive Latent Space Sampling

no code implementations19 Mar 2020 Yuanhan Mo, Shuo Wang, Chengliang Dai, Rui Zhou, Zhongzhao Teng, Wenjia Bai, Yike Guo

Supervised deep learning requires a large amount of training samples with annotations (e. g. label class for classification task, pixel- or voxel-wised label map for segmentation tasks), which are expensive and time-consuming to obtain.

General Classification Image Classification +2

Suggestive Labelling for Medical Image Analysis by Adaptive Latent Space Sampling

no code implementations MIDL 2019 Yuanhan Mo, Shuo Wang, Chengliang Dai, Zhongzhao Teng, Wenjia Bai, Yike Guo

Supervised deep learning for medical imaging analysis requires a large amount of training samples with annotations (e. g. label class for classification task, pixel- or voxel-wised label map for medical segmentation tasks), which are expensive and time-consuming to obtain.

Informativeness Medical Image Analysis

Regularizing Deep Multi-Task Networks using Orthogonal Gradients

1 code implementation14 Dec 2019 Mihai Suteu, Yike Guo

Deep neural networks are a promising approach towards multi-task learning because of their capability to leverage knowledge across domains and learn general purpose representations.

Multi-Task Learning

Biologically inspired architectures for sample-efficient deep reinforcement learning

no code implementations25 Nov 2019 Pierre H. Richemond, Arinbjörn Kolbeinsson, Yike Guo

Deep reinforcement learning requires a heavy price in terms of sample efficiency and overparameterization in the neural networks used for function approximation.

Deep Reinforcement Learning reinforcement-learning +1

Unsupervised Annotation of Phenotypic Abnormalities via Semantic Latent Representations on Electronic Health Records

1 code implementation10 Nov 2019 Jingqing Zhang, Xiao-Yu Zhang, Kai Sun, Xian Yang, Chengliang Dai, Yike Guo

The extraction of phenotype information which is naturally contained in electronic health records (EHRs) has been found to be useful in various clinical informatics applications such as disease diagnosis.

Computational Efficiency

How many weights are enough : can tensor factorization learn efficient policies ?

no code implementations25 Sep 2019 Pierre H. Richemond, Arinbjorn Kolbeinsson, Yike Guo

Deep reinforcement learning requires a heavy price in terms of sample efficiency and overparameterization in the neural networks used for function approximation.

Deep Reinforcement Learning reinforcement-learning +1

Integrated Multi-omics Analysis Using Variational Autoencoders: Application to Pan-cancer Classification

4 code implementations17 Aug 2019 Xiao-Yu Zhang, Jingqing Zhang, Kai Sun, Xian Yang, Chengliang Dai, Yike Guo

The training procedure of OmiVAE is comprised of an unsupervised phase without the classifier and a supervised phase with the classifier.

Cancer Classification Classification +4

Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction

no code implementations5 Jul 2019 Wenjia Bai, Chen Chen, Giacomo Tarroni, Jinming Duan, Florian Guitton, Steffen E. Petersen, Yike Guo, Paul M. Matthews, Daniel Rueckert

In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks.

Image Segmentation Medical Image Analysis +5

Static Activation Function Normalization

no code implementations3 May 2019 Pierre H. Richemond, Yike Guo

Recent seminal work at the intersection of deep neural networks practice and random matrix theory has linked the convergence speed and robustness of these networks with the combination of random weight initialization and nonlinear activation function in use.

Integrating Semantic Knowledge to Tackle Zero-shot Text Classification

2 code implementations NAACL 2019 Jingqing Zhang, Piyawat Lertvittayakumjorn, Yike Guo

Insufficient or even unavailable training data of emerging classes is a big challenge of many classification tasks, including text classification.

Data Augmentation General Classification +5

Combining learning rate decay and weight decay with complexity gradient descent - Part I

no code implementations7 Feb 2019 Pierre H. Richemond, Yike Guo

The role of $L^2$ regularization, in the specific case of deep neural networks rather than more traditional machine learning models, is still not fully elucidated.

Deep Sequence Learning with Auxiliary Information for Traffic Prediction

1 code implementation13 Jun 2018 Binbing Liao, Jingqing Zhang, Chao Wu, Douglas McIlwraith, Tong Chen, Shengwen Yang, Yike Guo, Fei Wu

Predicting traffic conditions from online route queries is a challenging task as there are many complicated interactions over the roads and crowds involved.

Decoder Traffic Prediction

Generative Creativity: Adversarial Learning for Bionic Design

no code implementations19 May 2018 Simiao Yu, Hao Dong, Pan Wang, Chao Wu, Yike Guo

Bionic design refers to an approach of generative creativity in which a target object (e. g. a floor lamp) is designed to contain features of biological source objects (e. g. flowers), resulting in creative biologically-inspired design.

Dropping Activation Outputs with Localized First-layer Deep Network for Enhancing User Privacy and Data Security

no code implementations20 Nov 2017 Hao Dong, Chao Wu, Zhen Wei, Yike Guo

However, current architecture of deep networks suffers the privacy issue that users need to give out their data to the model (typically hosted in a server or a cluster on Cloud) for training or prediction.

Anomaly Detection Decision Making +1

TensorLayer: A Versatile Library for Efficient Deep Learning Development

2 code implementations26 Jul 2017 Hao Dong, Akara Supratak, Luo Mai, Fangde Liu, Axel Oehmichen, Simiao Yu, Yike Guo

Deep learning has enabled major advances in the fields of computer vision, natural language processing, and multimedia among many others.

Deep Learning Management

Semantic Image Synthesis via Adversarial Learning

2 code implementations ICCV 2017 Hao Dong, Simiao Yu, Chao Wu, Yike Guo

In this paper, we propose a way of synthesizing realistic images directly with natural language description, which has many useful applications, e. g. intelligent image manipulation.

Image Manipulation

Deep De-Aliasing for Fast Compressive Sensing MRI

no code implementations19 May 2017 Simiao Yu, Hao Dong, Guang Yang, Greg Slabaugh, Pier Luigi Dragotti, Xujiong Ye, Fangde Liu, Simon Arridge, Jennifer Keegan, David Firmin, Yike Guo

Fast Magnetic Resonance Imaging (MRI) is highly in demand for many clinical applications in order to reduce the scanning cost and improve the patient experience.

Compressive Sensing De-aliasing +1

Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks

no code implementations10 May 2017 Hao Dong, Guang Yang, Fangde Liu, Yuanhan Mo, Yike Guo

In this context, a reliable fully automatic segmentation method for the brain tumor segmentation is necessary for an efficient measurement of the tumor extent.

Brain Tumor Segmentation Image Segmentation +2

The Deep Poincaré Map: A Novel Approach for Left Ventricle Segmentation

no code implementations27 Mar 2017 Yuanhan Mo, Fangde Liu, Douglas McIlwraith, Guang Yang, Jingqing Zhang, Taigang He, Yike Guo

Our method is evaluated on two datasets, namely the Sunnybrook Cardiac Dataset (SCD) and data from the STACOM 2011 LV segmentation challenge.

Left Ventricle Segmentation LV Segmentation +1

I2T2I: Learning Text to Image Synthesis with Textual Data Augmentation

no code implementations20 Mar 2017 Hao Dong, Jingqing Zhang, Douglas McIlwraith, Yike Guo

We demonstrate that %the capability of our method to understand the sentence descriptions, so as to I2T2I can generate better multi-categories images using MSCOCO than the state-of-the-art.

Caption Generation Data Augmentation +5

DeepSleepNet: a Model for Automatic Sleep Stage Scoring based on Raw Single-Channel EEG

8 code implementations12 Mar 2017 Akara Supratak, Hao Dong, Chao Wu, Yike Guo

This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different datasets without utilizing any hand-engineered features.

EEG Sleep Stage Detection

Unsupervised Image-to-Image Translation with Generative Adversarial Networks

no code implementations10 Jan 2017 Hao Dong, Paarth Neekhara, Chao Wu, Yike Guo

It's useful to automatically transform an image from its original form to some synthetic form (style, partial contents, etc.

Translation Unsupervised Image-To-Image Translation

Mixed Neural Network Approach for Temporal Sleep Stage Classification

no code implementations15 Oct 2016 Hao Dong, Akara Supratak, Wei Pan, Chao Wu, Paul M. Matthews, Yike Guo

Use of this recording configuration with neural network deconvolution promises to make clinically indicated home sleep studies practical.

Classification EEG +1

Automatic Sleep Stage Scoring with Single-Channel EEG Using Convolutional Neural Networks

no code implementations5 Oct 2016 Orestis Tsinalis, Paul M. Matthews, Yike Guo, Stefanos Zafeiriou

We used convolutional neural networks (CNNs) for automatic sleep stage scoring based on single-channel electroencephalography (EEG) to learn task-specific filters for classification without using prior domain knowledge.

EEG

DropNeuron: Simplifying the Structure of Deep Neural Networks

1 code implementation23 Jun 2016 Wei Pan, Hao Dong, Yike Guo

We proposed regularisers which support a simple mechanism of dropping neurons during a network training process.

Cannot find the paper you are looking for? You can Submit a new open access paper.