no code implementations • 4 Apr 2023 • Liu Yang, Di Chai, Junxue Zhang, Yilun Jin, Leye Wang, Hao liu, Han Tian, Qian Xu, Kai Chen
From the hardware layer to the vertical federated system layer, researchers contribute to various aspects of VFL.
no code implementations • 25 Mar 2023 • Yilun Jin, Yang Liu, Kai Chen, Qiang Yang
Therefore, the problem of federated learning without full labels is important in real-world FL applications.
no code implementations • 28 Jun 2022 • Shuowei Cai, Di Chai, Liu Yang, Junxue Zhang, Yilun Jin, Leye Wang, Kun Guo, Kai Chen
In this paper, we focus on SplitNN, a well-known neural network framework in VFL, and identify a trade-off between data security and model performance in SplitNN.
no code implementations • 30 Jun 2021 • Xu Geng, Yilun Jin, Zhengfei Zheng, Yu Yang, Yexin Li, Han Tian, Peibo Duan, Leye Wang, Jiannong Cao, Hai Yang, Qiang Yang, Kai Chen
Data-driven approaches have been applied to many problems in urban computing.
1 code implementation • 7 Apr 2021 • Qingqing Long, Yilun Jin, Yi Wu, Guojie Song
However, the inability of GNNs to model substructures in graphs remains a significant drawback.
no code implementations • 16 Mar 2021 • Chang Liu, Lixin Fan, Kam Woh Ng, Yilun Jin, Ce Ju, Tianyu Zhang, Chee Seng Chan, Qiang Yang
This paper proposes a novel ternary hash encoding for learning to hash methods, which provides a principled more efficient coding scheme with performances better than those of the state-of-the-art binary hashing counterparts.
no code implementations • 27 Nov 2020 • Yilun Jin, Lixin Fan, Kam Woh Ng, Ce Ju, Qiang Yang
Deep neural networks (DNNs) are known to be prone to adversarial attacks, for which many remedies are proposed.
no code implementations • 24 Sep 2020 • Junshan Wang, Yilun Jin, Guojie Song, Xiaojun Ma
In this paper, we propose EPNE, a temporal network embedding model preserving evolutionary patterns of the local structure of nodes.
1 code implementation • 25 Jun 2020 • Qingqing Long, Yilun Jin, Guojie Song, Yi Li, Wei. Lin
Specifically, we build topic models upon graphs using anonymous walks and Graph Anchor LDA, an LDA variant that selects significant structural patterns first, so as to alleviate the complexity and generate structural topics efficiently.
no code implementations • 26 Feb 2020 • Yilun Jin, Xiguang Wei, Yang Liu, Qiang Yang
Federated Learning (FL) proposed in recent years has received significant attention from researchers in that it can bring separate data sources together and build machine learning models in a collaborative but private manner.
no code implementations • 18 Nov 2019 • Yilun Jin, Guojie Song, Chuan Shi
Specifically, we capture local graph structures via random anonymous walks, powerful and flexible tools that represent structural patterns.
2 code implementations • 3 Jun 2019 • Yizhou Zhang, Guojie Song, Lun Du, Shu-wen Yang, Yilun Jin
Recent works reveal that network embedding techniques enable many machine learning models to handle diverse downstream tasks on graph structured data.
1 code implementation • 25 Jan 2019 • Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios Papadopoulos, Qiang Yang
This federated learning system allows the learning process to be jointly conducted over multiple parties with common user samples but different feature sets, which corresponds to a vertically partitioned data set.
no code implementations • 4 Jan 2018 • Yi Zhang, Houjun Huang, Haifeng Zhang, Liao Ni, Wei Xu, Nasir Uddin Ahmed, Md. Shakil Ahmed, Yilun Jin, Yingjie Chen, Jingxuan Wen, Wenxin Li
The development of finger vein recognition algorithms heavily depends on large-scale real-world data sets.