no code implementations • EMNLP 2020 • Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng Ji, Jonathan May, Nathanael Chambers, Clare Voss
Event schemas can guide our understanding and ability to make predictions with respect to what might happen next.
no code implementations • ACL (ECNLP) 2021 • Ying Lin, Han Wang, Jiangning Chen, Tong Wang, Yue Liu, Heng Ji, Yang Liu, Premkumar Natarajan
We first build a cross-source heterogeneous knowledge graph from customer purchase history and product knowledge graph to jointly learn customer and product embeddings.
no code implementations • 2 May 2025 • Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil, Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zilberstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus Kliegl, Rabeeh Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Brandon Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary, Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Marco Rovinelli, Viji Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin, Michael Evans, Shaona Ghosh, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Chris Alexiuk, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geifman, Eric Chung
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use.
no code implementations • 4 Apr 2025 • Nvidia, :, Aaron Blakeman, Aarti Basant, Abhinav Khattar, Adithya Renduchintala, Akhiad Bercovich, Aleksander Ficek, Alexis Bjorlin, Ali Taghibakhshi, Amala Sanjay Deshmukh, Ameya Sunil Mahabaleshwarkar, Andrew Tao, Anna Shors, Ashwath Aithal, Ashwin Poojary, Ayush Dattagupta, Balaram Buddharaju, Bobby Chen, Boris Ginsburg, Boxin Wang, Brandon Norick, Brian Butterfield, Bryan Catanzaro, Carlo del Mundo, chengyu dong, Christine Harvey, Christopher Parisien, Dan Su, Daniel Korzekwa, Danny Yin, Daria Gitman, David Mosallanezhad, Deepak Narayanan, Denys Fridman, Dima Rekesh, Ding Ma, Dmytro Pykhtar, Dong Ahn, Duncan Riach, Dusan Stosic, Eileen Long, Elad Segal, Ellie Evans, Eric Chung, Erick Galinkin, Evelina Bakhturina, Ewa Dobrowolska, Fei Jia, Fuxiao Liu, Gargi Prasad, Gerald Shen, Guilin Liu, Guo Chen, Haifeng Qian, Helen Ngo, Hongbin Liu, Hui Li, Igor Gitman, Ilia Karmanov, Ivan Moshkov, Izik Golan, Jan Kautz, Jane Polak Scowcroft, Jared Casper, Jarno Seppanen, Jason Lu, Jason Sewall, Jiaqi Zeng, Jiaxuan You, Jimmy Zhang, Jing Zhang, Jining Huang, Jinze Xue, Jocelyn Huang, Joey Conway, John Kamalu, Jon Barker, Jonathan Cohen, Joseph Jennings, Jupinder Parmar, Karan Sapra, Kari Briski, Kateryna Chumachenko, Katherine Luna, Keshav Santhanam, Kezhi Kong, Kirthi Sivamani, Krzysztof Pawelec, Kumar Anik, Kunlun Li, Lawrence McAfee, Leon Derczynski, Lindsey Pavao, Luis Vega, Lukas Voegtle, Maciej Bala, Maer Rodrigues de Melo, Makesh Narsimhan Sreedhar, Marcin Chochowski, Markus Kliegl, Marta Stepniewska-Dziubinska, Matthieu Le, Matvei Novikov, Mehrzad Samadi, Michael Andersch, Michael Evans, Miguel Martinez, Mike Chrzanowski, Mike Ranzinger, Mikolaj Blaz, Misha Smelyanskiy, Mohamed Fawzy, Mohammad Shoeybi, Mostofa Patwary, Nayeon Lee, Nima Tajbakhsh, Ning Xu, Oleg Rybakov, Oleksii Kuchaiev, Olivier Delalleau, Osvald Nitski, Parth Chadha, Pasha Shamis, Paulius Micikevicius, Pavlo Molchanov, Peter Dykas, Philipp Fischer, Pierre-Yves Aquilanti, Piotr Bialecki, Prasoon Varshney, Pritam Gundecha, Przemek Tredak, Rabeeh Karimi, Rahul Kandu, Ran El-Yaniv, Raviraj Joshi, Roger Waleffe, Ruoxi Zhang, Sabrina Kavanaugh, Sahil Jain, Samuel Kriman, Sangkug Lym, Sanjeev Satheesh, Saurav Muralidharan, Sean Narenthiran, Selvaraj Anandaraj, Seonmyeong Bak, Sergey Kashirsky, Seungju Han, Shantanu Acharya, Shaona Ghosh, Sharath Turuvekere Sreenivas, Sharon Clay, Shelby Thomas, Shrimai Prabhumoye, Shubham Pachori, Shubham Toshniwal, Shyamala Prayaga, Siddhartha Jain, Sirshak Das, Slawek Kierat, Somshubra Majumdar, Song Han, Soumye Singhal, Sriharsha Niverty, Stefania Alborghetti, Suseella Panguluri, Swetha Bhendigeri, Syeda Nahida Akter, Szymon Migacz, Tal Shiri, Terry Kong, Timo Roman, Tomer Ronen, Trisha Saar, Tugrul Konuk, Tuomas Rintamaki, Tyler Poon, Ushnish De, Vahid Noroozi, Varun Singh, Vijay Korthikanti, Vitaly Kurin, Wasi Uddin Ahmad, Wei Du, Wei Ping, Wenliang Dai, Wonmin Byeon, Xiaowei Ren, Yao Xu, Yejin Choi, Yian Zhang, Ying Lin, Yoshi Suhara, Zhiding Yu, Zhiqi Li, Zhiyu Li, Zhongbo Zhu, Zhuolin Yang, Zijia Chen
We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level.
no code implementations • 3 Dec 2024 • Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro
This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7. 2T came from our dataset, is better than the Llama 3. 1 8B model: +5 on MMLU, +3. 1 on ARC-Challenge, and +0. 5 on average across ten diverse tasks.
no code implementations • 14 Aug 2024 • Shiva Afshar, Yinghan Chen, Shizhong Han, Ying Lin
Combining multiple predictors obtained from distributed data sources to an accurate meta-learner is promising to achieve enhanced performance in lots of prediction problems.
no code implementations • 30 May 2024 • Tanapol Kosolwattana, Huazheng Wang, Raed Al Kontar, Ying Lin
Online learning has demonstrated notable potential to dynamically allocate limited resources to monitor a large population of processes, effectively balancing the exploitation of processes yielding high rewards, and the exploration of uncertain processes.
no code implementations • 26 Jul 2023 • Tanapol Kosolwattana, Huazheng Wang, Ying Lin
Adaptive monitoring of a large population of dynamic processes is critical for the timely detection of abnormal events under limited resources in many healthcare and engineering systems.
no code implementations • 29 May 2022 • YuXuan Li, Ying Lin, Chenang Liu
Investigating the causal relationships between characteristics and expressions plays a critical role in healthcare analytics.
no code implementations • 30 Aug 2021 • Zhishen Nie, Ying Lin, Sp Ren, Lan Zhang
Adversarial training has become the primary method to defend against adversarial samples.
1 code implementation • NAACL 2021 • Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha Li, Xudong Lin, Ben Zhou, Manling Li, Haoyu Wang, Hongming Zhang, Xiaodong Yu, Alexander Dong, Zhenhailong Wang, Yi Fung, Piyush Mishra, Qing Lyu, D{\'\i}dac Sur{\'\i}s, Brian Chen, Susan Windisch Brown, Martha Palmer, Chris Callison-Burch, Carl Vondrick, Jiawei Han, Dan Roth, Shih-Fu Chang, Heng Ji
We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video).
no code implementations • 6 Apr 2021 • Ying Lin, Han Wang, Jiangning Chen, Tong Wang, Yue Liu, Heng Ji, Yang Liu, Premkumar Natarajan
For example, with "add milk to my cart", a customer may refer to a certain organic product, while some customers may want to re-order products they regularly purchase.
no code implementations • 9 Dec 2020 • Junji Ma, Jinbo Zhang, Ying Lin, Zhengjia Dai
Using this algorithm, we generated a population of synthetic networks with optimal but diverse cost-efficiency trade-offs.
no code implementations • NAACL 2021 • Qingyun Wang, Manling Li, Xuan Wang, Nikolaus Parulian, Guangxing Han, Jiawei Ma, Jingxuan Tu, Ying Lin, Haoran Zhang, Weili Liu, Aabhas Chauhan, Yingjun Guan, Bangzheng Li, Ruisong Li, Xiangchen Song, Yi R. Fung, Heng Ji, Jiawei Han, Shih-Fu Chang, James Pustejovsky, Jasmine Rah, David Liem, Ahmed Elsayed, Martha Palmer, Clare Voss, Cynthia Schneider, Boyan Onyshkevych
To combat COVID-19, both clinicians and scientists need to digest vast amounts of relevant biomedical knowledge in scientific literature to understand the disease mechanism and related biological functions.
no code implementations • ACL 2020 • Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan, Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji, Shih-Fu Chang, Clare Voss, Daniel Napierski, Marjorie Freedman
We present the first comprehensive, open source multimedia knowledge extraction system that takes a massive stream of unstructured, heterogeneous multimedia data from various sources and languages as input, and creates a coherent, structured knowledge base, indexing entities, relations, and events, following a rich, fine-grained ontology.
no code implementations • ACL 2020 • Ying Lin, Heng Ji, Fei Huang, Lingfei Wu
OneIE performs end-to-end IE in four stages: (1) Encoding a given sentence as contextualized word representations; (2) Identifying entity mentions and event triggers as nodes; (3) Computing label scores for all nodes and their pairwise links using local classifiers; (4) Searching for the globally optimal graph with a beam decoder.
no code implementations • IJCNLP 2019 • Ying Lin, Heng Ji
In addition, we propose a two-step mention-aware attention mechanism to enable the model to focus on important words in mentions and contexts.
1 code implementation • ACL 2019 • Ying Lin, Liyuan Liu, Heng Ji, Dong Yu, Jiawei Han
We design a set of word frequency-based reliability signals to indicate the quality of each word embedding.
no code implementations • NAACL 2019 • Manling Li, Ying Lin, Joseph Hoover, Spencer Whitehead, Clare Voss, Morteza Dehghani, Heng Ji
This paper demonstrates a state-of-the-art end-to-end multilingual (English, Russian, and Ukrainian) knowledge extraction system that can perform entity discovery and linking, relation extraction, event extraction, and coreference.
1 code implementation • NAACL 2019 • Ronald Cardenas, Ying Lin, Heng Ji, Jonathan May
We also show extrinsically that incorporating our POS tagger into a name tagger leads to state-of-the-art tagging performance in Sinhalese and Kinyarwanda, two languages with nearly no labeled POS data available.
1 code implementation • ACL 2018 • Ying Lin, Shengqi Yang, Veselin Stoyanov, Heng Ji
We propose a multi-lingual multi-task architecture to develop supervised models with a minimal amount of labeled data for sequence labeling.
no code implementations • ACL 2018 • Ying Lin, Cash Costello, Boliang Zhang, Di Lu, Heng Ji, James Mayfield, Paul McNamee
We demonstrate two annotation platforms that allow an English speaker to annotate names for any language without knowing the language.
no code implementations • NAACL 2018 • Boliang Zhang, Ying Lin, Xiaoman Pan, Di Lu, Jonathan May, Kevin Knight, Heng Ji
We demonstrate ELISA-EDL, a state-of-the-art re-trainable system to extract entity mentions from low-resource languages, link them to external English knowledge bases, and visualize locations related to disaster topics on a world heatmap.
no code implementations • IJCNLP 2017 • Boliang Zhang, Di Lu, Xiaoman Pan, Ying Lin, Halidanmu Abudukelimu, Heng Ji, Kevin Knight
Current supervised name tagging approaches are inadequate for most low-resource languages due to the lack of annotated data and actionable linguistic knowledge.
no code implementations • 16 Sep 2017 • Ying Lin, Joe Hoover, Morteza Dehghani, Marlon Mooijman, Heng Ji
In this paper, we address the problem of detecting expressions of moral values in tweets using content analysis.
1 code implementation • IEEE Transactions on Cybernetics 2017 • Yong-Feng Ge, Wei-Jie Yu, Ying Lin, Yue-Jiao Gong, Zhi-Hui Zhan, Wei-neng Chen, Jun Zhang et al.
In this way, the number of subpopulations is adaptively adjusted and better performing subpopulations obtain more individuals.
no code implementations • ACL 2017 • Ying Lin, Chin-Yew Lin, Heng Ji
Traditional Entity Linking (EL) technologies rely on rich structures and properties in the target knowledge base (KB).