Search Results for author: Ying Shan

Found 18 papers, 5 papers with code

Finding Discriminative Filters for Specific Degradations in Blind Super-Resolution

no code implementations2 Aug 2021 Liangbin Xie, Xintao Wang, Chao Dong, Zhongang Qi, Ying Shan

Unlike previous integral gradient methods, our FAIG aims at finding the most discriminative filters instead of input pixels/features for degradation removal in blind SR networks.

Super-Resolution

Cross-modal Consensus Network for Weakly Supervised Temporal Action Localization

no code implementations27 Jul 2021 Fa-Ting Hong, Jia-Chang Feng, Dan Xu, Ying Shan, Wei-Shi Zheng

In this work, we argue that the features extracted from the pretrained extractor, e. g., I3D, are not the WS-TALtask-specific features, thus the feature re-calibration is needed for reducing the task-irrelevant information redundancy.

Weakly-supervised Temporal Action Localization Weakly Supervised Temporal Action Localization

Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

1 code implementation22 Jul 2021 Xintao Wang, Liangbin Xie, Chao Dong, Ying Shan

Though many attempts have been made in blind super-resolution to restore low-resolution images with unknown and complex degradations, they are still far from addressing general real-world degraded images.

Super-Resolution

Tracking Instances as Queries

1 code implementation22 Jun 2021 Shusheng Yang, Yuxin Fang, Xinggang Wang, Yu Li, Ying Shan, Bin Feng, Wenyu Liu

Recently, query based deep networks catch lots of attention owing to their end-to-end pipeline and competitive results on several fundamental computer vision tasks, such as object detection, semantic segmentation, and instance segmentation.

Instance Segmentation Object Detection +2

Instances as Queries

1 code implementation5 May 2021 Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen Fang, Ying Shan, Bin Feng, Wenyu Liu

The key insight of QueryInst is to leverage the intrinsic one-to-one correspondence in object queries across different stages, as well as one-to-one correspondence between mask RoI features and object queries in the same stage.

Instance Segmentation Object Detection +1

Distilling Audio-Visual Knowledge by Compositional Contrastive Learning

1 code implementation CVPR 2021 Yanbei Chen, Yongqin Xian, A. Sophia Koepke, Ying Shan, Zeynep Akata

Having access to multi-modal cues (e. g. vision and audio) empowers some cognitive tasks to be done faster compared to learning from a single modality.

Contrastive Learning Knowledge Distillation +2

Crossover Learning for Fast Online Video Instance Segmentation

no code implementations13 Apr 2021 Shusheng Yang, Yuxin Fang, Xinggang Wang, Yu Li, Chen Fang, Ying Shan, Bin Feng, Wenyu Liu

For temporal information modeling in VIS, we present a novel crossover learning scheme that uses the instance feature in the current frame to pixel-wisely localize the same instance in other frames.

Instance Segmentation Semantic Segmentation +2

Open-book Video Captioning with Retrieve-Copy-Generate Network

no code implementations CVPR 2021 Ziqi Zhang, Zhongang Qi, Chunfeng Yuan, Ying Shan, Bing Li, Ying Deng, Weiming Hu

Due to the rapid emergence of short videos and the requirement for content understanding and creation, the video captioning task has received increasing attention in recent years.

Video Captioning

Towards Real-World Blind Face Restoration with Generative Facial Prior

1 code implementation CVPR 2021 Xintao Wang, Yu Li, Honglun Zhang, Ying Shan

Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details.

Blind Face Restoration GAN inversion

Non-Inherent Feature Compatible Learning

no code implementations1 Jan 2021 Yantao Shen, Fanzi Wu, Ying Shan

In this work, we introduce an approach for feature compatible learning without inheriting old classifier and training data, i. e., Non-Inherent Feature Compatible Learning.

Detecting Interactions from Neural Networks via Topological Analysis

no code implementations NeurIPS 2020 Zirui Liu, Qingquan Song, Kaixiong Zhou, Ting-Hsiang Wang, Ying Shan, Xia Hu

Motivated by the observation, in this paper, we propose to investigate the interaction detection problem from a novel topological perspective by analyzing the connectivity in neural networks.

Towards Interaction Detection Using Topological Analysis on Neural Networks

no code implementations25 Oct 2020 Zirui Liu, Qingquan Song, Kaixiong Zhou, Ting Hsiang Wang, Ying Shan, Xia Hu

Detecting statistical interactions between input features is a crucial and challenging task.

A Simple Yet Effective Method for Video Temporal Grounding with Cross-Modality Attention

no code implementations23 Sep 2020 Binjie Zhang, Yu Li, Chun Yuan, Dejing Xu, Pin Jiang, Ying Shan

The task of language-guided video temporal grounding is to localize the particular video clip corresponding to a query sentence in an untrimmed video.

Dual Semantic Fusion Network for Video Object Detection

no code implementations16 Sep 2020 Lijian Lin, Haosheng Chen, Honglun Zhang, Jun Liang, Yu Li, Ying Shan, Hanzi Wang

Video object detection is a tough task due to the deteriorated quality of video sequences captured under complex environments.

Optical Flow Estimation Video Object Detection

Recurrent Binary Embedding for GPU-Enabled Exhaustive Retrieval from Billion-Scale Semantic Vectors

no code implementations18 Feb 2018 Ying Shan, Jian Jiao, Jie Zhu, JC Mao

Building on top of the powerful concept of semantic learning, this paper proposes a Recurrent Binary Embedding (RBE) model that learns compact representations for real-time retrieval.

Information Retrieval

Deep Embedding Forest: Forest-based Serving with Deep Embedding Features

no code implementations15 Mar 2017 Jie Zhu, Ying Shan, JC Mao, Dong Yu, Holakou Rahmanian, Yi Zhang

Built on top of a representative DNN model called Deep Crossing, and two forest/tree-based models including XGBoost and LightGBM, a two-step Deep Embedding Forest algorithm is demonstrated to achieve on-par or slightly better performance as compared with the DNN counterpart, with only a fraction of serving time on conventional hardware.

Cannot find the paper you are looking for? You can Submit a new open access paper.