1 code implementation • 26 Oct 2022 • Yuchen Zhuang, Yinghao Li, Jerry Junyang Cheung, Yue Yu, Yingjun Mou, Xiang Chen, Le Song, Chao Zhang
We study the problem of extracting N-ary relation tuples from scientific articles.
1 code implementation • 7 Aug 2022 • Mengyang Liu, Haozheng Luo, Leonard Thong, Yinghao Li, Chao Zhang, Le Song
Compared to frequently used text annotation tools, our annotation tool allows for the development of weak labels in addition to providing a manual annotation experience.
1 code implementation • 27 May 2022 • Yinghao Li, Le Song, Chao Zhang
Weakly supervised named entity recognition methods train label models to aggregate the token annotations of multiple noisy labeling functions (LFs) without seeing any manually annotated labels.
Named Entity Recognition
Weakly-Supervised Named Entity Recognition
1 code implementation • 23 Sep 2021 • Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, Alexander Ratner
To address these problems, we introduce a benchmark platform, WRENCH, for thorough and standardized evaluation of WS approaches.
2 code implementations • ACL 2021 • Yinghao Li, Pranav Shetty, Lucas Liu, Chao Zhang, Le Song
To address this challenge, we propose a conditional hidden Markov model (CHMM), which can effectively infer true labels from multi-source noisy labels in an unsupervised way.
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Wendi Ren, Yinghao Li, Hanting Su, David Kartchner, Cassie Mitchell, Chao Zhang
We study the problem of learning neural text classifiers without using any labeled data, but only easy-to-provide rules as multiple weak supervision sources.
1 code implementation • 5 Oct 2020 • Yinghao Li, Rui Feng, Isaac Rehg, Chao Zhang
We study the problem of using (partial) constituency parse trees as syntactic guidance for controlled text generation.
1 code implementation • 18 Jun 2020 • Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng Sun, Chao Zhang
We propose a self-supervised taxonomy expansion model named STEAM, which leverages natural supervision in the existing taxonomy for expansion.