no code implementations • 25 Dec 2024 • Yilei Jiang, Yingshui Tan, Xiangyu Yue
While Multimodal Large Language Models (MLLMs) have made remarkable progress in vision-language reasoning, they are also more susceptible to producing harmful content compared to models that focus solely on text.
no code implementations • 17 Dec 2024 • Yingshui Tan, Boren Zheng, Baihui Zheng, Kerui Cao, Huiyun Jing, Jincheng Wei, Jiaheng Liu, Yancheng He, Wenbo Su, Xiangyong Zhu, Bo Zheng, Kaifu Zhang
With the rapid advancement of Large Language Models (LLMs), significant safety concerns have emerged.
no code implementations • 18 Nov 2024 • Zhendong Liu, Yuanbi Nie, Yingshui Tan, Jiaheng Liu, Xiangyu Yue, Qiushi Cui, Chongjun Wang, Xiaoyong Zhu, Bo Zheng
However, recent research shows that the visual modality in VLMs is highly vulnerable, allowing attackers to bypass safety alignment in LLMs through visually transmitted content, launching harmful attacks.
no code implementations • 11 Nov 2024 • Yancheng He, Shilong Li, Jiaheng Liu, Yingshui Tan, Weixun Wang, Hui Huang, Xingyuan Bu, Hangyu Guo, Chengwei Hu, Boren Zheng, Zhuoran Lin, Xuepeng Liu, Dekai Sun, Shirong Lin, Zhicheng Zheng, Xiaoyong Zhu, Wenbo Su, Bo Zheng
Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs.
no code implementations • 23 Oct 2024 • Yanshi Li, Shaopan Xiong, Gengru Chen, Xiaoyang Li, Yijia Luo, Xingyao Zhang, Yanhui Huang, Xingyuan Bu, Yingshui Tan, Chun Yuan, Jiamang Wang, Wenbo Su, Bo Zheng
Our method improves the success rate on adversarial samples by 10\% compared to the sample-wise approach, and achieves a 1. 3\% improvement on evaluation benchmarks such as MMLU, GSM8K, HumanEval, etc.
no code implementations • 22 May 2024 • Zhendong Liu, Yuanbi Nie, Yingshui Tan, Xiangyu Yue, Qiushi Cui, Chongjun Wang, Xiaoyong Zhu, Bo Zheng
To address this issue, we enhance the existing VLMs' visual modality safety alignment by adding safety modules, including a safety projector, safety tokens, and a safety head, through a two-stage training process, effectively improving the model's defense against risky images.
no code implementations • 20 Aug 2020 • Yingshui Tan, Baihong Jin, Qiushi Cui, Xiangyu Yue, Alberto Sangiovanni Vincentelli
Incipient anomalies present milder symptoms compared to severe ones, and are more difficult to detect and diagnose due to their close resemblance to normal operating conditions.
no code implementations • 20 Aug 2020 • Baihong Jin, Yingshui Tan, Albert Liu, Xiangyu Yue, Yuxin Chen, Alberto Sangiovanni Vincentelli
Incipient anomalies present milder symptoms compared to severe ones, and are more difficult to detect and diagnose due to their close resemblance to normal operating conditions.
no code implementations • 12 Jul 2020 • Yingshui Tan, Baihong Jin, Xiangyu Yue, Yuxin Chen, Alberto Sangiovanni Vincentelli
Ensemble learning is widely applied in Machine Learning (ML) to improve model performance and to mitigate decision risks.
no code implementations • 7 Jul 2020 • Baihong Jin, Yingshui Tan, Yuxin Chen, Kameshwar Poolla, Alberto Sangiovanni Vincentelli
Intermediate-Severity (IS) faults present milder symptoms compared to severe faults, and are more difficult to detect and diagnose due to their close resemblance to normal operating conditions.
no code implementations • 10 Sep 2019 • Baihong Jin, Yingshui Tan, Yuxin Chen, Alberto Sangiovanni-Vincentelli
The Monte Carlo dropout method has proved to be a scalable and easy-to-use approach for estimating the uncertainty of deep neural network predictions.
no code implementations • 26 Jul 2019 • Baihong Jin, Yingshui Tan, Alexander Nettekoven, Yuxin Chen, Ufuk Topcu, Yisong Yue, Alberto Sangiovanni Vincentelli
We show that the encoder-decoder model is able to identify the injected anomalies in a modern manufacturing process in an unsupervised fashion.