no code implementations • 9 Mar 2025 • Yanze Zhang, Yiwei Lyu, Siwon Jo, Yupeng Yang, Wenhao Luo
To avoid dominating effects due to the deadlock resolution over the original task-related controllers, a deadlock indicator function using CBF-inspired risk measurement is proposed and encoded in the unified framework for the agents to adaptively determine when to activate the deadlock resolution.
no code implementations • 15 Apr 2024 • Cheng Jiang, Alexander Gedeon, Yiwei Lyu, Eric Landgraf, Yufeng Zhang, Xinhai Hou, Akhil Kondepudi, Asadur Chowdury, Honglak Lee, Todd Hollon
Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models.
2 code implementations • 20 Mar 2024 • Yiwei Lyu, Sung Jik Cha, Cheng Jiang, Asadur Chowdury, Xinhai Hou, Edward Harake, Akhil Kondepudi, Christian Freudiger, Honglak Lee, Todd C. Hollon
Here, we present Restorative Step-Calibrated Diffusion (RSCD), an unpaired diffusion-based image restoration method that uses a step calibrator model to dynamically determine the number of steps required to complete the reverse diffusion process for image restoration.
no code implementations • 9 Feb 2024 • Xinhai Hou, Cheng Jiang, Akhil Kondepudi, Yiwei Lyu, Asadur Chowdury, Honglak Lee, Todd C. Hollon
Whole slide imaging is fundamental to biomedical microscopy and computational pathology.
1 code implementation • 7 Dec 2023 • Sungryull Sohn, Yiwei Lyu, Anthony Liu, Lajanugen Logeswaran, Dong-Ki Kim, Dongsub Shim, Honglak Lee
Our TOD-Flow graph learns what a model can, should, and should not predict, effectively reducing the search space and providing a rationale for the model's prediction.
no code implementations • 16 Nov 2023 • Lajanugen Logeswaran, Sungryull Sohn, Yiwei Lyu, Anthony Zhe Liu, Dong-Ki Kim, Dongsub Shim, Moontae Lee, Honglak Lee
One of the fundamental skills required for an agent acting in an environment to complete tasks is the ability to understand what actions are plausible at any given point.
1 code implementation • 28 Jun 2023 • Paul Pu Liang, Yiwei Lyu, Xiang Fan, Arav Agarwal, Yun Cheng, Louis-Philippe Morency, Ruslan Salakhutdinov
Learning multimodal representations involves integrating information from multiple heterogeneous sources of data.
1 code implementation • 31 May 2023 • Yiwei Lyu, Tiange Luo, Jiacheng Shi, Todd C. Hollon, Honglak Lee
Diffusion probabilistic models have shown great success in generating high-quality images controllably, and researchers have tried to utilize this controllability into text generation domain.
no code implementations • 22 May 2023 • Yiwei Lyu, Wenhao Luo, John M. Dolan
Decentralized control schemes are increasingly favored in various domains that involve multi-agent systems due to the need for computational efficiency as well as general applicability to large-scale systems.
no code implementations • 13 Apr 2023 • Wenli Xiao, Yiwei Lyu, John Dolan
This design enables efficient synthesis of shields to monitor agents in complex environments without coordination overheads.
Multi-agent Reinforcement Learning
reinforcement-learning
+2
no code implementations • 1 Dec 2022 • Soumith Udatha, Yiwei Lyu, John Dolan
We use probabilistic control barrier functions as an estimate of the model uncertainty.
1 code implementation • 10 Nov 2022 • Xiang Fan, Yiwei Lyu, Paul Pu Liang, Ruslan Salakhutdinov, Louis-Philippe Morency
Existing techniques for controlling the distribution of generated text only work with quantified distributions, which require pre-defined categories, proportions of the distribution, or an existing corpus following the desired distributions.
1 code implementation • 30 Jun 2022 • Paul Pu Liang, Yiwei Lyu, Gunjan Chhablani, Nihal Jain, Zihao Deng, Xingbo Wang, Louis-Philippe Morency, Ruslan Salakhutdinov
How can we visualize the internal modeling of multimodal interactions in these models?
1 code implementation • 3 Mar 2022 • Yiwei Lyu, Paul Pu Liang, Zihao Deng, Ruslan Salakhutdinov, Louis-Philippe Morency
The ability for a human to understand an Artificial Intelligence (AI) model's decision-making process is critical in enabling stakeholders to visualize model behavior, perform model debugging, promote trust in AI models, and assist in collaborative human-AI decision-making.
1 code implementation • 2 Mar 2022 • Paul Pu Liang, Yiwei Lyu, Xiang Fan, Jeffrey Tsaw, Yudong Liu, Shentong Mo, Dani Yogatama, Louis-Philippe Morency, Ruslan Salakhutdinov
Many real-world problems are inherently multimodal, from spoken language, gestures, and paralinguistics humans use to communicate, to force, proprioception, and visual sensors on robots.
2 code implementations • 15 Jul 2021 • Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie Chen, Peter Wu, Michelle A. Lee, Yuke Zhu, Ruslan Salakhutdinov, Louis-Philippe Morency
In order to accelerate progress towards understudied modalities and tasks while ensuring real-world robustness, we release MultiBench, a systematic and unified large-scale benchmark spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas.
2 code implementations • NAACL 2021 • Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard Hovy, Barnabás Póczos, Ruslan Salakhutdinov, Louis-Philippe Morency
Many of the existing style transfer benchmarks primarily focus on individual high-level semantic changes (e. g. positive to negative), which enable controllability at a high level but do not offer fine-grained control involving sentence structure, emphasis, and content of the sentence.
no code implementations • 27 Jun 2019 • William B. Langdon, Westley Weimer, Christopher Timperley, Oliver Krauss, Zhen Yu Ding, Yiwei Lyu, Nicolas Chausseau, Eric Schulte, Shin Hwei Tan, Kevin Leach, Yu Huang, Gabin An
We report the discussion session at the sixth international Genetic Improvement workshop, GI-2019 @ ICSE, which was held as part of the 41st ACM/IEEE International Conference on Software Engineering on Tuesday 28th May 2019.