Search Results for author: Yixin Cao

Found 89 papers, 55 papers with code

Do Pre-trained Models Benefit Knowledge Graph Completion? A Reliable Evaluation and a Reasonable Approach

1 code implementation Findings (ACL) 2022 Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu, Peng Li, Jie zhou

In recent years, pre-trained language models (PLMs) have been shown to capture factual knowledge from massive texts, which encourages the proposal of PLM-based knowledge graph completion (KGC) models.

Knowledge Graph Completion Link Prediction

Pairwise RM: Perform Best-of-N Sampling with Knockout Tournament

1 code implementation22 Jan 2025 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, Juanzi Li

To address this, we propose a Pairwise Reward Model (Pairwise RM) combined with a knockout tournament for BoN sampling.

Math

Long Context vs. RAG for LLMs: An Evaluation and Revisits

1 code implementation27 Dec 2024 Xinze Li, Yixin Cao, Yubo Ma, Aixin Sun

Extending context windows (i. e., Long Context, LC) and using retrievers to selectively access relevant information (i. e., Retrieval-Augmented Generation, RAG) are the two main strategies to enable LLMs to incorporate extremely long external contexts.

Question Answering RAG +1

EvoWiki: Evaluating LLMs on Evolving Knowledge

no code implementations18 Dec 2024 Wei Tang, Yixin Cao, Yang Deng, Jiahao Ying, Bo wang, Yizhe Yang, Yuyue Zhao, Qi Zhang, Xuanjing Huang, Yugang Jiang, Yong Liao

Knowledge utilization is a critical aspect of LLMs, and understanding how they adapt to evolving knowledge is essential for their effective deployment.

RAG

ForgerySleuth: Empowering Multimodal Large Language Models for Image Manipulation Detection

1 code implementation29 Nov 2024 Zhihao Sun, Haoran Jiang, Haoran Chen, Yixin Cao, Xipeng Qiu, Zuxuan Wu, Yu-Gang Jiang

Moreover, we construct the ForgeryAnalysis dataset through the Chain-of-Clues prompt, which includes analysis and reasoning text to upgrade the image manipulation detection task.

Image Manipulation Image Manipulation Detection

Multi-Programming Language Sandbox for LLMs

1 code implementation30 Oct 2024 Shihan Dou, Jiazheng Zhang, Jianxiang Zang, Yunbo Tao, Weikang Zhou, Haoxiang Jia, Shichun Liu, Yuming Yang, Zhiheng Xi, Shenxi Wu, Shaoqing Zhang, Muling Wu, Changze Lv, Limao Xiong, WenYu Zhan, Lin Zhang, Rongxiang Weng, Jingang Wang, Xunliang Cai, Yueming Wu, Ming Wen, Rui Zheng, Tao Ji, Yixin Cao, Tao Gui, Xipeng Qiu, Qi Zhang, Xuanjing Huang

We introduce MPLSandbox, an out-of-the-box multi-programming language sandbox designed to provide unified and comprehensive feedback from compiler and analysis tools for Large Language Models (LLMs).

RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style

1 code implementation21 Oct 2024 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, Juanzi Li

However, this approach fails to assess reward models on subtle but critical content changes and variations in style, resulting in a low correlation with policy model performance.

Benchmarking Language Modeling +1

Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models

1 code implementation4 Oct 2024 Haibo Wang, Zhiyang Xu, Yu Cheng, Shizhe Diao, Yufan Zhou, Yixin Cao, Qifan Wang, Weifeng Ge, Lifu Huang

Video Large Language Models (Video-LLMs) have demonstrated remarkable capabilities in coarse-grained video understanding, however, they struggle with fine-grained temporal grounding.

Dense Video Captioning Sentence +1

Complex Logical Query Answering by Calibrating Knowledge Graph Completion Models

1 code implementation30 Sep 2024 Changyi Xiao, Yixin Cao

The core concept of CKGC is to map the values of predictions of KGC models to the range [0, 1], ensuring that values associated with true facts are close to 1, while values linked to false facts are close to 0.

Knowledge Graph Embedding by Normalizing Flows

1 code implementation30 Sep 2024 Changyi Xiao, Xiangnan He, Yixin Cao

To reflect uncertainty, we first embed entities/relations as permutations of a set of random variables.

Knowledge Graph Embedding

LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning

1 code implementation19 Sep 2024 Jin Jiang, Yuchen Yan, Yang Liu, Yonggang Jin, Shuai Peng, Mengdi Zhang, Xunliang Cai, Yixin Cao, Liangcai Gao, Zhi Tang

In this paper, we present a novel approach, called LogicPro, to enhance Large Language Models (LLMs) complex Logical reasoning through Program Examples.

GSM8K Logical Reasoning +1

S$^3$c-Math: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners

no code implementations3 Sep 2024 Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Mengdi Zhang, Xunliang Cai, Jian Shao

To the best of our knowledge, we are the first to introduce the spontaneous step-level self-correction ability of LLMs in mathematical reasoning.

GSM8K Math +1

Diagnosing and Remedying Knowledge Deficiencies in LLMs via Label-free Curricular Meaningful Learning

no code implementations21 Aug 2024 Kai Xiong, Xiao Ding, Li Du, Jiahao Ying, Ting Liu, Bing Qin, Yixin Cao

This makes it a challenge to diagnose and remedy the deficiencies of LLMs through rich label-free user queries.

Diagnostic

LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement

no code implementations29 Jun 2024 Jiahao Ying, Mingbao Lin, Yixin Cao, Wei Tang, Bo wang, Qianru Sun, Xuanjing Huang, Shuicheng Yan

Inspired by the theory of "Learning from Errors", this framework employs an instructor LLM to meticulously analyze the specific errors within a target model, facilitating targeted and efficient training cycles.

Contrastive Learning Mathematical Reasoning

QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism

1 code implementation19 Jun 2024 Bo wang, Heyan Huang, Yixin Cao, Jiahao Ying, Wei Tang, Chong Feng

While large language models (LLMs) have made notable advancements in natural language processing, they continue to struggle with processing extensive text.

Multiple-choice Question Answering

Planning Like Human: A Dual-process Framework for Dialogue Planning

1 code implementation8 Jun 2024 Tao He, Lizi Liao, Yixin Cao, Yuanxing Liu, Ming Liu, Zerui Chen, Bing Qin

In proactive dialogue, the challenge lies not just in generating responses but in steering conversations toward predetermined goals, a task where Large Language Models (LLMs) typically struggle due to their reactive nature.

Prompt Engineering

A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential

no code implementations6 Jun 2024 Wei Tang, Yixin Cao, Jiahao Ying, Bo wang, Yuyue Zhao, Yong Liao, Pengyuan Zhou

In this paper, we formalize a general "A + B" framework with varying combinations of foundation models and types for systematic investigation.

RAG Retrieval

Combinatorial Approximations for Cluster Deletion: Simpler, Faster, and Better

1 code implementation24 Apr 2024 Vicente Balmaseda, Ying Xu, Yixin Cao, Nate Veldt

Cluster deletion is an NP-hard graph clustering objective with applications in computational biology and social network analysis, where the goal is to delete a minimum number of edges to partition a graph into cliques.

Graph Clustering

Quantifying and Mitigating Unimodal Biases in Multimodal Large Language Models: A Causal Perspective

1 code implementation27 Mar 2024 Meiqi Chen, Yixin Cao, Yan Zhang, Chaochao Lu

Within this framework, we conduct an in-depth causal analysis to assess the causal effect of these biases on MLLM predictions.

Question Answering Visual Question Answering

Meaningful Learning: Enhancing Abstract Reasoning in Large Language Models via Generic Fact Guidance

1 code implementation14 Mar 2024 Kai Xiong, Xiao Ding, Ting Liu, Bing Qin, Dongliang Xu, Qing Yang, Hongtao Liu, Yixin Cao

The results show that our approach not only boosts the general reasoning performance of LLMs but also makes considerable strides towards their capacity for abstract reasoning, moving beyond simple memorization or imitation to a more nuanced understanding and application of generic facts.

Memorization

Event-level Knowledge Editing

1 code implementation20 Feb 2024 Hao Peng, Xiaozhi Wang, Chunyang Li, Kaisheng Zeng, Jiangshan Duo, Yixin Cao, Lei Hou, Juanzi Li

However, natural knowledge updates in the real world come from the occurrences of new events rather than direct changes in factual triplets.

knowledge editing Triplet

Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models

no code implementations19 Feb 2024 Jiahao Ying, Yixin Cao, Yushi Bai, Qianru Sun, Bo wang, Wei Tang, Zhaojun Ding, Yizhe Yang, Xuanjing Huang, Shuicheng Yan

There are two updating strategies: 1) mimicking strategy to generate similar samples based on original data, preserving stylistic and contextual essence, and 2) extending strategy that further expands existing samples at varying cognitive levels by adapting Bloom's taxonomy of educational objectives.

MMLU

SciAgent: Tool-augmented Language Models for Scientific Reasoning

no code implementations18 Feb 2024 Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu, Shuohang Wang, Liangming Pan, Yujiu Yang, Yixin Cao, Aixin Sun, Hany Awadalla, Weizhu Chen

To make this task more practical and solvable for LLMs, we introduce a new task setting named tool-augmented scientific reasoning.

FedMKGC: Privacy-Preserving Federated Multilingual Knowledge Graph Completion

no code implementations17 Dec 2023 Wei Tang, Zhiqian Wu, Yixin Cao, Yong Liao, Pengyuan Zhou

As such, the aggregated language model can leverage complementary knowledge from multilingual KGs without demanding raw user data sharing.

Entity Alignment Federated Learning +4

SCTc-TE: A Comprehensive Formulation and Benchmark for Temporal Event Forecasting

1 code implementation2 Dec 2023 Yunshan Ma, Chenchen Ye, Zijian Wu, Xiang Wang, Yixin Cao, Liang Pang, Tat-Seng Chua

Temporal complex event forecasting aims to predict the future events given the observed events from history.

X-Eval: Generalizable Multi-aspect Text Evaluation via Augmented Instruction Tuning with Auxiliary Evaluation Aspects

no code implementations15 Nov 2023 Minqian Liu, Ying Shen, Zhiyang Xu, Yixin Cao, Eunah Cho, Vaibhav Kumar, Reza Ghanadan, Lifu Huang

Natural Language Generation (NLG) typically involves evaluating the generated text in various aspects (e. g., consistency and naturalness) to obtain a comprehensive assessment.

Dialogue Generation Language Modelling +2

Finding and Editing Multi-Modal Neurons in Pre-Trained Transformers

1 code implementation13 Nov 2023 Haowen Pan, Yixin Cao, Xiaozhi Wang, Xun Yang, Meng Wang

Understanding the internal mechanisms by which multi-modal large language models (LLMs) interpret different modalities and integrate cross-modal representations is becoming increasingly critical for continuous improvements in both academia and industry.

Hallucination knowledge editing +1

A Comprehensive Evaluation of Large Language Models on Legal Judgment Prediction

1 code implementation18 Oct 2023 Ruihao Shui, Yixin Cao, Xiang Wang, Tat-Seng Chua

Large language models (LLMs) have demonstrated great potential for domain-specific applications, such as the law domain.

Information Retrieval Legal Reasoning +1

Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution

1 code implementation9 Oct 2023 Xinze Li, Yixin Cao, Liangming Pan, Yubo Ma, Aixin Sun

Although achieving great success, Large Language Models (LLMs) usually suffer from unreliable hallucinations.

Attribute Language Modeling +4

Intuitive or Dependent? Investigating LLMs' Behavior Style to Conflicting Prompts

no code implementations29 Sep 2023 Jiahao Ying, Yixin Cao, Kai Xiong, Yidong He, Long Cui, Yongbin Liu

Drawing on cognitive theory, we target the first scenario of decision-making styles where there is no superiority in the conflict and categorize LLMs' preference into dependent, intuitive, and rational/irrational styles.

Benchmarking Decision Making +2

FOLLOWUPQG: Towards Information-Seeking Follow-up Question Generation

no code implementations10 Sep 2023 Yan Meng, Liangming Pan, Yixin Cao, Min-Yen Kan

We introduce the task of real-world information-seeking follow-up question generation (FQG), which aims to generate follow-up questions seeking a more in-depth understanding of an initial question and answer.

Informativeness Question Generation +1

Context-aware Event Forecasting via Graph Disentanglement

1 code implementation12 Aug 2023 Yunshan Ma, Chenchen Ye, Zijian Wu, Xiang Wang, Yixin Cao, Tat-Seng Chua

The task of event forecasting aims to model the relational and temporal patterns based on historical events and makes forecasting to what will happen in the future.

Disentanglement Link Prediction

Constructing Holistic Spatio-Temporal Scene Graph for Video Semantic Role Labeling

no code implementations9 Aug 2023 Yu Zhao, Hao Fei, Yixin Cao, Bobo Li, Meishan Zhang, Jianguo Wei, Min Zhang, Tat-Seng Chua

A scene-event mapping mechanism is first designed to bridge the gap between the underlying scene structure and the high-level event semantic structure, resulting in an overall hierarchical scene-event (termed ICE) graph structure.

Semantic Role Labeling

Robust Prompt Optimization for Large Language Models Against Distribution Shifts

no code implementations23 May 2023 Moxin Li, Wenjie Wang, Fuli Feng, Yixin Cao, Jizhi Zhang, Tat-Seng Chua

In this light, we propose a new problem of robust prompt optimization for LLMs against distribution shifts, which requires the prompt optimized over the labeled source group can simultaneously generalize to an unlabeled target group.

Language Modeling Language Modelling +1

Examining Inter-Consistency of Large Language Models Collaboration: An In-depth Analysis via Debate

1 code implementation19 May 2023 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, Bing Qin

Through extensive experiments on various datasets, LLMs can effectively collaborate to reach a consensus despite noticeable inter-inconsistencies, but imbalances in their abilities can lead to domination by superior LLMs.

Decision Making

Information Screening whilst Exploiting! Multimodal Relation Extraction with Feature Denoising and Multimodal Topic Modeling

1 code implementation19 May 2023 Shengqiong Wu, Hao Fei, Yixin Cao, Lidong Bing, Tat-Seng Chua

First, we represent the fine-grained semantic structures of the input image and text with the visual and textual scene graphs, which are further fused into a unified cross-modal graph (CMG).

Denoising Relation +1

Take a Break in the Middle: Investigating Subgoals towards Hierarchical Script Generation

1 code implementation18 May 2023 Xinze Li, Yixin Cao, Muhao Chen, Aixin Sun

Goal-oriented Script Generation is a new task of generating a list of steps that can fulfill the given goal.

Script Generation

Few-shot Event Detection: An Empirical Study and a Unified View

1 code implementation3 May 2023 Yubo Ma, Zehao Wang, Yixin Cao, Aixin Sun

Few-shot event detection (ED) has been widely studied, while this brings noticeable discrepancies, e. g., various motivations, tasks, and experimental settings, that hinder the understanding of models for future progress. This paper presents a thorough empirical study, a unified view of ED models, and a better unified baseline.

Event Detection

R$^2$F: A General Retrieval, Reading and Fusion Framework for Document-level Natural Language Inference

1 code implementation22 Oct 2022 Hao Wang, Yixin Cao, Yangguang Li, Zhen Huang, Kun Wang, Jing Shao

Document-level natural language inference (DOCNLI) is a new challenging task in natural language processing, aiming at judging the entailment relationship between a pair of hypothesis and premise documents.

Natural Language Inference Retrieval +1

TGDM: Target Guided Dynamic Mixup for Cross-Domain Few-Shot Learning

1 code implementation11 Oct 2022 Linhai Zhuo, Yuqian Fu, Jingjing Chen, Yixin Cao, Yu-Gang Jiang

The proposed TGDM framework contains a Mixup-3T network for learning classifiers and a dynamic ratio generation network (DRGN) for learning the optimal mix ratio.

cross-domain few-shot learning Transfer Learning

VEM$^2$L: A Plug-and-play Framework for Fusing Text and Structure Knowledge on Sparse Knowledge Graph Completion

no code implementations4 Jul 2022 Tao He, Ming Liu, Yixin Cao, Tianwen Jiang, Zihao Zheng, Jingrun Zhang, Sendong Zhao, Bing Qin

In this paper, we solve the sparse KGC from these two motivations simultaneously and handle their respective drawbacks further, and propose a plug-and-play unified framework VEM$^2$L over sparse KGs.

Knowledge Distillation Missing Elements +1

ERGO: Event Relational Graph Transformer for Document-level Event Causality Identification

no code implementations COLING 2022 Meiqi Chen, Yixin Cao, Kunquan Deng, Mukai Li, Kun Wang, Jing Shao, Yan Zhang

In this paper, we propose a novel Event Relational Graph TransfOrmer (ERGO) framework for DECI, which improves existing state-of-the-art (SOTA) methods upon two aspects.

Event Causality Identification Node Classification +2

Information Extraction in Low-Resource Scenarios: Survey and Perspective

3 code implementations16 Feb 2022 Shumin Deng, Yubo Ma, Ningyu Zhang, Yixin Cao, Bryan Hooi

Information Extraction (IE) seeks to derive structured information from unstructured texts, often facing challenges in low-resource scenarios due to data scarcity and unseen classes.

Survey

What Makes the Story Forward? Inferring Commonsense Explanations as Prompts for Future Event Generation

no code implementations18 Jan 2022 Li Lin, Yixin Cao, Lifu Huang, Shu'ang Li, Xuming Hu, Lijie Wen, Jianmin Wang

To alleviate the knowledge forgetting issue, we design two modules, Im and Gm, for each type of knowledge, which are combined via prompt tuning.

Information Retrieval Retrieval +1

Interactive Contrastive Learning for Self-supervised Entity Alignment

no code implementations17 Jan 2022 Kaisheng Zeng, Zhenhao Dong, Lei Hou, Yixin Cao, Minghao Hu, Jifan Yu, Xin Lv, Juanzi Li, Ling Feng

Self-supervised entity alignment (EA) aims to link equivalent entities across different knowledge graphs (KGs) without seed alignments.

Contrastive Learning Entity Alignment +1

Training Free Graph Neural Networks for Graph Matching

1 code implementation14 Jan 2022 Zhiyuan Liu, Yixin Cao, Fuli Feng, Xiang Wang, Jie Tang, Kenji Kawaguchi, Tat-Seng Chua

We present a framework of Training Free Graph Matching (TFGM) to boost the performance of Graph Neural Networks (GNNs) based graph matching, providing a fast promising solution without training (training-free).

Entity Alignment Graph Matching +1

Are Missing Links Predictable? An Inferential Benchmark for Knowledge Graph Completion

1 code implementation ACL 2021 Yixin Cao, Xiang Ji, Xin Lv, Juanzi Li, Yonggang Wen, Hanwang Zhang

We present InferWiki, a Knowledge Graph Completion (KGC) dataset that improves upon existing benchmarks in inferential ability, assumptions, and patterns.

Knowledge Graph Completion

How Knowledge Graph and Attention Help? A Qualitative Analysis into Bag-level Relation Extraction

1 code implementation ACL 2021 Zikun Hu, Yixin Cao, Lifu Huang, Tat-Seng Chua

In this paper, we contribute a dataset and propose a paradigm to quantitatively evaluate the effect of attention and KG on bag-level relation extraction (RE).

Relation Relation Extraction

How Knowledge Graph and Attention Help? A Quantitative Analysis into Bag-level Relation Extraction

1 code implementation26 Jul 2021 Zikun Hu, Yixin Cao, Lifu Huang, Tat-Seng Chua

In this paper, we contribute a dataset and propose a paradigm to quantitatively evaluate the effect of attention and KG on bag-level relation extraction (RE).

Relation Relation Extraction

Is Multi-Hop Reasoning Really Explainable? Towards Benchmarking Reasoning Interpretability

1 code implementation EMNLP 2021 Xin Lv, Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu, Yichi Zhang, Zelin Dai

However, we find in experiments that many paths given by these models are actually unreasonable, while little works have been done on interpretability evaluation for them.

Benchmarking Link Prediction

Flashot: A Snapshot of Flash Loan Attack on DeFi Ecosystem

no code implementations1 Feb 2021 Yixin Cao, Chuanwei Zou, Xianfeng Cheng

Flash Loan attack can grab millions of dollars from decentralized vaults in one single transaction, drawing increasing attention from the Decentralized Finance (DeFi) players.

Learning Relation Prototype from Unlabeled Texts for Long-tail Relation Extraction

1 code implementation27 Nov 2020 Yixin Cao, Jun Kuang, Ming Gao, Aoying Zhou, Yonggang Wen, Tat-Seng Chua

In this paper, we propose a general approach to learn relation prototypesfrom unlabeled texts, to facilitate the long-tail relation extraction by transferring knowledge from the relation types with sufficient trainingdata.

Relation Relation Extraction +1

Tree-Augmented Cross-Modal Encoding for Complex-Query Video Retrieval

no code implementations6 Jul 2020 Xun Yang, Jianfeng Dong, Yixin Cao, Xun Wang, Meng Wang, Tat-Seng Chua

To facilitate video retrieval with complex queries, we propose a Tree-augmented Cross-modal Encoding method by jointly learning the linguistic structure of queries and the temporal representation of videos.

Retrieval Video Retrieval

Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model

1 code implementation IJCNLP 2019 Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, Tat-Seng Chua

Specifically, as for the knowledge embedding model, we utilize TransE to implicitly complete two KGs towards consistency and learn relational constraints between entities.

Entity Alignment Graph Attention +2

Low-Resource Name Tagging Learned with Weakly Labeled Data

1 code implementation IJCNLP 2019 Yixin Cao, Zikun Hu, Tat-Seng Chua, Zhiyuan Liu, Heng Ji

Name tagging in low-resource languages or domains suffers from inadequate training data.

TAG

Who, Where, and What to Wear? Extracting Fashion Knowledge from Social Media

no code implementations12 Aug 2019 Yunshan Ma, Xun Yang, Lizi Liao, Yixin Cao, Tat-Seng Chua

We unify three tasks of occasion, person and clothing discovery from multiple modalities of images, texts and metadata.

Human Detection

Improving Neural Relation Extraction with Implicit Mutual Relations

1 code implementation8 Jul 2019 Jun Kuang, Yixin Cao, Jianbing Zheng, Xiangnan He, Ming Gao, Aoying Zhou

In contrast to existing distant supervision approaches that suffer from insufficient training corpora to extract relations, our proposal of mining implicit mutual relation from the massive unlabeled corpora transfers the semantic information of entity pairs into the RE model, which is more expressive and semantically plausible.

Relation Relation Extraction

KGAT: Knowledge Graph Attention Network for Recommendation

7 code implementations20 May 2019 Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, Tat-Seng Chua

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account.

Explainable Recommendation Graph Neural Network +1

Neural Collective Entity Linking

1 code implementation COLING 2018 Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu

To address this issue, we propose a novel neural model for collective entity linking, named as NCEL.

Entity Linking

Explainable Reasoning over Knowledge Graphs for Recommendation

2 code implementations12 Nov 2018 Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, Tat-Seng Chua

Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest.

Knowledge Graphs Recommendation Systems

Visually Explainable Recommendation

no code implementations31 Jan 2018 Xu Chen, Yongfeng Zhang, Hongteng Xu, Yixin Cao, Zheng Qin, Hongyuan Zha

By this, we can not only provide recommendation results to the users, but also tell the users why an item is recommended by providing intuitive visual highlights in a personalized manner.

Explainable Recommendation Recommendation Systems

On Modeling Sense Relatedness in Multi-prototype Word Embedding

no code implementations IJCNLP 2017 Yixin Cao, Jiaxin Shi, Juanzi Li, Zhiyuan Liu, Chengjiang Li

To enhance the expression ability of distributional word representation learning model, many researchers tend to induce word senses through clustering, and learn multiple embedding vectors for each word, namely multi-prototype word embedding model.

Clustering Language Modeling +4

Cannot find the paper you are looking for? You can Submit a new open access paper.