1 code implementation • 29 May 2023 • Yixin Liu, Kaize Ding, Jianling Wang, Vincent Lee, Huan Liu, Shirui Pan
Accordingly, we propose D$^2$PT, a dual-channel GNN framework that performs long-range information propagation not only on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
1 code implementation • 26 May 2023 • Kai Zhang, Jun Yu, Zhiling Yan, Yixin Liu, Eashan Adhikarla, Sunyang Fu, Xun Chen, Chen Chen, Yuyin Zhou, Xiang Li, Lifang He, Brian D. Davison, Quanzheng Li, Yong Chen, Hongfang Liu, Lichao Sun
In this paper, we introduce a unified and generalist Biomedical Generative Pre-trained Transformer (BiomedGPT) model, which leverages self-supervision on large and diverse datasets to accept multi-modal inputs and perform a range of downstream tasks.
1 code implementation • 23 May 2023 • Yixin Liu, Alexander R. Fabbri, PengFei Liu, Dragomir Radev, Arman Cohan
Therefore, we investigate a new learning paradigm of text summarization models that considers the LLMs as the reference or the gold-standard oracle on commonly used summarization datasets such as the CNN/DailyMail dataset.
1 code implementation • 23 May 2023 • Yilun Zhao, Zhenting Qi, Linyong Nan, Boyu Mi, Yixin Liu, Weijin Zou, Simeng Han, Xiangru Tang, Yumo Xu, Arman Cohan, Dragomir Radev
People primarily consult tables to conduct data analysis or answer specific questions.
1 code implementation • 7 Mar 2023 • Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, Lichao Sun
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
1 code implementation • 7 Mar 2023 • Yixin Liu, Alexander R. Fabbri, Yilun Zhao, PengFei Liu, Shafiq Joty, Chien-Sheng Wu, Caiming Xiong, Dragomir Radev
Interpretability and efficiency are two important considerations for the adoption of neural automatic metrics.
no code implementations • 5 Mar 2023 • Yixin Liu, Haohui Ye, Kai Zhang, Lichao Sun
The volume of open-source biomedical data has been essential to the development of various spheres of the healthcare community since more `free' data can provide individual researchers more chances to contribute.
no code implementations • 5 Mar 2023 • Yixin Liu, Chenrui Fan, Pan Zhou, Lichao Sun
While the use of graph-structured data in various fields is becoming increasingly popular, it also raises concerns about the potential unauthorized exploitation of personal data for training commercial graph neural network (GNN) models, which can compromise privacy.
no code implementations • 18 Feb 2023 • Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang He, Hao Peng, JianXin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian Pei, Philip S. Yu, Lichao Sun
This study provides a comprehensive review of recent research advancements, challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities.
1 code implementation • 20 Dec 2022 • Yixin Liu, Budhaditya Deb, Milagro Teruel, Aaron Halfaker, Dragomir Radev, Ahmed H. Awadallah
In this work, we study whether informational feedback in natural language can be leveraged to improve generation quality and user preference alignment.
no code implementations • 20 Dec 2022 • Lining Zhang, João Sedoc, Simon Mille, Yufang Hou, Sebastian Gehrmann, Daniel Deutsch, Elizabeth Clark, Yixin Liu, Miruna Clinciu, Saad Mahamood, Khyathi Chandu
The acquisition of high-quality human annotations through crowdsourcing platforms like Amazon Mechanical Turk (MTurk) is more challenging than expected.
2 code implementations • 15 Dec 2022 • Yixin Liu, Alexander R. Fabbri, PengFei Liu, Yilun Zhao, Linyong Nan, Ruilin Han, Simeng Han, Shafiq Joty, Chien-Sheng Wu, Caiming Xiong, Dragomir Radev
4) We evaluate existing automatic metrics using the collected human annotations across evaluation protocols and demonstrate how our benchmark leads to more statistically stable and significant results.
1 code implementation • 25 Nov 2022 • Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent CS Lee, Shirui Pan
Node representations are learned through contrasting the dual-channel encodings obtained from the discriminated homophilic and heterophilic edges.
no code implementations • 23 Nov 2022 • Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, Di Wang
Results show that SEAT is more stable against different perturbations and randomness while also keeps the explainability of attention, which indicates it is a more faithful explanation.
1 code implementation • 23 Nov 2022 • Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, Chengqi Zhang
Inspired by this, we propose FedStar, an FGL framework that extracts and shares the common underlying structure information for inter-graph federated learning tasks.
1 code implementation • 8 Nov 2022 • Yixin Liu, Kaize Ding, Huan Liu, Shirui Pan
As a pioneering work in unsupervised graph-level OOD detection, we build a comprehensive benchmark to compare our proposed approach with different state-of-the-art methods.
1 code implementation • 2 Sep 2022 • Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq Joty, Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria Lin, Caiming Xiong, Dragomir Radev
We present FOLIO, a human-annotated, open-domain, and logically complex and diverse dataset for reasoning in natural language (NL), equipped with first order logic (FOL) annotations.
no code implementations • 22 Jun 2022 • Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papangelis, Aman Madaan, Angelina McMillan-Major, Anna Shvets, Ashish Upadhyay, Bingsheng Yao, Bryan Wilie, Chandra Bhagavatula, Chaobin You, Craig Thomson, Cristina Garbacea, Dakuo Wang, Daniel Deutsch, Deyi Xiong, Di Jin, Dimitra Gkatzia, Dragomir Radev, Elizabeth Clark, Esin Durmus, Faisal Ladhak, Filip Ginter, Genta Indra Winata, Hendrik Strobelt, Hiroaki Hayashi, Jekaterina Novikova, Jenna Kanerva, Jenny Chim, Jiawei Zhou, Jordan Clive, Joshua Maynez, João Sedoc, Juraj Juraska, Kaustubh Dhole, Khyathi Raghavi Chandu, Laura Perez-Beltrachini, Leonardo F. R. Ribeiro, Lewis Tunstall, Li Zhang, Mahima Pushkarna, Mathias Creutz, Michael White, Mihir Sanjay Kale, Moussa Kamal Eddine, Nico Daheim, Nishant Subramani, Ondrej Dusek, Paul Pu Liang, Pawan Sasanka Ammanamanchi, Qi Zhu, Ratish Puduppully, Reno Kriz, Rifat Shahriyar, Ronald Cardenas, Saad Mahamood, Salomey Osei, Samuel Cahyawijaya, Sanja Štajner, Sebastien Montella, Shailza, Shailza Jolly, Simon Mille, Tahmid Hasan, Tianhao Shen, Tosin Adewumi, Vikas Raunak, Vipul Raheja, Vitaly Nikolaev, Vivian Tsai, Yacine Jernite, Ying Xu, Yisi Sang, Yixin Liu, Yufang Hou
This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims.
1 code implementation • 25 May 2022 • Yixin Liu, Ansong Ni, Linyong Nan, Budhaditya Deb, Chenguang Zhu, Ahmed H. Awadallah, Dragomir Radev
Our experimental results show that our model has a better performance compared with strong baselines with efficient attention modules, and our analysis provides further insights into our locality-aware modeling strategy.
1 code implementation • 25 May 2022 • Linyong Nan, Lorenzo Jaime Yu Flores, Yilun Zhao, Yixin Liu, Luke Benson, Weijin Zou, Dragomir Radev
Unfaithful text generation is a common problem for text generation systems.
2 code implementations • ACL 2022 • Yixin Liu, PengFei Liu, Dragomir Radev, Graham Neubig
Abstractive summarization models are commonly trained using maximum likelihood estimation, which assumes a deterministic (one-point) target distribution in which an ideal model will assign all the probability mass to the reference summary.
Ranked #2 on
Text Summarization
on X-Sum
no code implementations • ACL 2022 • Yang Xiao, Jinlan Fu, Weizhe Yuan, Vijay Viswanathan, Zhoumianze Liu, Yixin Liu, Graham Neubig, PengFei Liu
Despite data's crucial role in machine learning, most existing tools and research tend to focus on systems on top of existing data rather than how to interpret and manipulate data.
no code implementations • 14 Feb 2022 • Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, Philip S. Yu
Recent years have witnessed fast developments of graph neural networks (GNNs) that have benefited myriads of graph analytic tasks and applications.
no code implementations • 11 Feb 2022 • Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T. Phan, Shirui Pan, Yi-Ping Phoebe Chen
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce.
1 code implementation • 17 Jan 2022 • Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, Shirui Pan
To solve the unsupervised GSL problem, we propose a novel StrUcture Bootstrapping contrastive LearnIng fraMEwork (SUBLIME for abbreviation) with the aid of self-supervised contrastive learning.
1 code implementation • 16 Dec 2021 • Swapnil Hingmire, Irene Li, Rena Kawamura, Benjamin Chen, Alexander Fabbri, Xiangru Tang, Yixin Liu, Thomas George, Tammy Liao, Wai Pan Wong, Vanessa Yan, Richard Zhou, Girish K. Palshikar, Dragomir Radev
We propose a classification scheme -- CLICKER for CL/NLP based on the analysis of online lectures from 77 university courses on this subject.
no code implementations • LREC 2022 • Irene Li, Alexander Fabbri, Rina Kawamura, Yixin Liu, Xiangru Tang, Jaesung Tae, Chang Shen, Sally Ma, Tomoe Mizutani, Dragomir Radev
Fast-developing fields such as Artificial Intelligence (AI) often outpace the efforts of encyclopedic sources such as Wikipedia, which either do not completely cover recently-introduced topics or lack such content entirely.
no code implementations • 14 Oct 2021 • Zongzheng Zhao, Yixin Liu, Li Guo, Linquan Bai, Chengshan Wang
An effective distribution electricity market (DEM) is required to manage the rapidly growing small-scale distributed energy resources (DERs) in distribution systems (DSs).
1 code implementation • 23 Aug 2021 • Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T. Phan, Yi-Ping Phoebe Chen
While the generative attribute regression module allows us to capture the anomalies in the attribute space, the multi-view contrastive learning module can exploit richer structure information from multiple subgraphs, thus abling to capture the anomalies in the structure space, mixing of structure, and attribute information.
no code implementations • 28 Jun 2021 • Yixin Liu, Jiaxin Guo, Jieyang Dong, Luoqian Jiang, Haoyuan Ouyang
In this paper, we propose a method to predict the priority of sighting reports based on machine learning.
1 code implementation • 18 Jun 2021 • Yixin Liu, Shirui Pan, Yu Guang Wang, Fei Xiong, Liang Wang, Qingfeng Chen, Vincent CS Lee
Detecting anomalies for dynamic graphs has drawn increasing attention due to their wide applications in social networks, e-commerce, and cybersecurity.
2 code implementations • ACL 2021 • Yixin Liu, PengFei Liu
In this paper, we present a conceptually simple while empirically powerful framework for abstractive summarization, SimCLS, which can bridge the gap between the learning objective and evaluation metrics resulting from the currently dominated sequence-to-sequence learning framework by formulating text generation as a reference-free evaluation problem (i. e., quality estimation) assisted by contrastive learning.
Ranked #4 on
Text Summarization
on X-Sum
1 code implementation • NAACL 2021 • Yixin Liu, Zi-Yi Dou, PengFei Liu
Although some recent works show potential complementarity among different state-of-the-art systems, few works try to investigate this problem in text summarization.
1 code implementation • ACL 2021 • PengFei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan, Shuaicheng Chang, Junqi Dai, Yixin Liu, Zihuiwen Ye, Zi-Yi Dou, Graham Neubig
In this paper, we present a new conceptualization and implementation of NLP evaluation: the ExplainaBoard, which in addition to inheriting the functionality of the standard leaderboard, also allows researchers to (i) diagnose strengths and weaknesses of a single system (e. g.~what is the best-performing system bad at?)
1 code implementation • 27 Feb 2021 • Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, George Karypis
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair, which can capture the relationship between each node and its neighboring substructure in an unsupervised way.
3 code implementations • 27 Feb 2021 • Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, Philip S. Yu
Deep learning on graphs has attracted significant interests recently.
no code implementations • 24 Nov 2020 • Zhao Li, Yixin Liu, Zhen Zhang, Shirui Pan, Jianliang Gao, Jiajun Bu
To overcome these limitations, we introduce a novel framework for graph semi-supervised learning termed as Cyclic Label Propagation (CycProp for abbreviation), which integrates GNNs into the process of label propagation in a cyclic and mutually reinforcing manner to exploit the advantages of both GNNs and LPA.
1 code implementation • NAACL 2021 • Yixin Liu, Graham Neubig, John Wieting
In most cases, the lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task.
no code implementations • 21 Sep 2020 • Yixin Liu, Yong Guo, Zichang Liu, Haohua Liu, Jingjie Zhang, Zejun Chen, Jing Liu, Jian Chen
To address this issue, given a target compression rate for the whole model, one can search for the optimal compression rate for each layer.
no code implementations • WS 2020 • Michael Yang, Yixin Liu, Rahul Mayuranath
In this paper, we introduce a system built for the Duolingo Simultaneous Translation And Paraphrase for Language Education (STAPLE) shared task at the 4th Workshop on Neural Generation and Translation (WNGT 2020).
1 code implementation • 26 Dec 2018 • Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Yixin Liu, Philip S. Yu, Lifang He, Bo Li
Therefore, this review is intended to provide an overall landscape of more than 100 papers on adversarial attack and defense strategies for graph data, and establish a unified formulation encompassing most graph adversarial learning models.