no code implementations • WMT (EMNLP) 2020 • Lucia Specia, Zhenhao Li, Juan Pino, Vishrav Chaudhary, Francisco Guzmán, Graham Neubig, Nadir Durrani, Yonatan Belinkov, Philipp Koehn, Hassan Sajjad, Paul Michel, Xian Li
We report the findings of the second edition of the shared task on improving robustness in Machine Translation (MT).
no code implementations • 24 May 2023 • Alessandro Stolfo, Yonatan Belinkov, Mrinmaya Sachan
Our findings provide insights into the mechanistic interpretation of LLMs for arithmetic tasks and highlight the specific components involved in arithmetic reasoning.
1 code implementation • 22 May 2023 • Shahar Katz, Yonatan Belinkov
In this paper, we interpret LM attention heads and memory values, the vectors the models dynamically create and recall while processing a given input.
1 code implementation • 17 May 2023 • Shadi Iskander, Kira Radinsky, Yonatan Belinkov
In this work, we propose Iterative Gradient-Based Projection (IGBP), a novel method for removing non-linear encoded concepts from neural representations.
1 code implementation • 29 Mar 2023 • Adir Rahamim, Yonatan Belinkov
In contrast to common closed-form similarity measures, ContraSim learns a parameterized measure by using both similar and dissimilar examples.
1 code implementation • 14 Mar 2023 • Hadas Orgad, Bahjat Kawar, Yonatan Belinkov
Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e. g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e. g., "a pack of blue roses").
1 code implementation • 21 Dec 2022 • Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham
The key to the approach is to carve a long context into chunks (``windows''), restrict the attention mechanism to apply only within each window, and re-use the positional embeddings across the windows.
no code implementations • 20 Dec 2022 • Hadas Orgad, Yonatan Belinkov
Models trained from real-world data tend to imitate and amplify social biases.
1 code implementation • 20 Dec 2022 • Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Belinkov, Jonathan Berant, Amir Globerson
We leverage this insight and propose a simple way to enrich query and passage representations with lexical information at inference time, and show that this significantly improves performance compared to the original model in zero-shot settings, and specifically on the BEIR benchmark.
2 code implementations • 9 Nov 2022 • BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions.
no code implementations • 4 Nov 2022 • Boaz Carmeli, Ron Meir, Yonatan Belinkov
The field of emergent communication aims to understand the characteristics of communication as it emerges from artificial agents solving tasks that require information exchange.
no code implementations • NAACL (GeBNLP) 2022 • Hadas Orgad, Yonatan Belinkov
In this position paper, we assess the current paradigm of gender bias evaluation and identify several flaws in it.
no code implementations • 17 Oct 2022 • Rachit Bansal, Danish Pruthi, Yonatan Belinkov
In this work, we hypothesize -- and subsequently show -- that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
1 code implementation • 13 Oct 2022 • Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, David Bau
Recent work has shown exciting promise in updating large language models with new memories, so as to replace obsolete information or add specialized knowledge.
no code implementations • 28 Jul 2022 • Yanai Elazar, Nora Kassner, Shauli Ravfogel, Amir Feder, Abhilasha Ravichander, Marius Mosbach, Yonatan Belinkov, Hinrich Schütze, Yoav Goldberg
Our causal framework and our results demonstrate the importance of studying datasets and the benefits of causality for understanding NLP models.
1 code implementation • 9 Jun 2022 • Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramón Risco Delgado, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Timothy Telleen-Lawton, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, ZiRui Wang, Ziyi Wu
BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models.
1 code implementation • DeepLo 2022 • Omer Antverg, Eyal Ben-David, Yonatan Belinkov
We propose a new approach for domain adaptation (DA), using neuron-level interventions: We modify the representation of each test example in specific neurons, resulting in a counterfactual example from the source domain, which the model is more familiar with.
no code implementations • 1 May 2022 • Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit Bata, Yoav Levine, Kevin Leyton-Brown, Dor Muhlgay, Noam Rozen, Erez Schwartz, Gal Shachaf, Shai Shalev-Shwartz, Amnon Shashua, Moshe Tenenholtz
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
2 code implementations • NAACL 2022 • Hadas Orgad, Seraphina Goldfarb-Tarrant, Yonatan Belinkov
Common studies of gender bias in NLP focus either on extrinsic bias measured by model performance on a downstream task or on intrinsic bias found in models' internal representations.
1 code implementation • 11 Apr 2022 • Kerem Zaman, Yonatan Belinkov
Most evaluations of attribution methods focus on the English language.
1 code implementation • 10 Feb 2022 • Kevin Meng, David Bau, Alex Andonian, Yonatan Belinkov
To test our hypothesis that these computations correspond to factual association recall, we modify feed-forward weights to update specific factual associations using Rank-One Model Editing (ROME).
no code implementations • NeurIPS 2021 • Yana Dranker, He He, Yonatan Belinkov
Invariant Risk Minimization (IRM) is a recently proposed framework for out-of-distribution (o. o. d) generalization.
2 code implementations • ICLR 2022 • Omer Antverg, Yonatan Belinkov
Among these, the common approach is to use an external probe to rank neurons according to their relevance to some linguistic attribute, and to evaluate the obtained ranking using the same probe that produced it.
no code implementations • 29 Sep 2021 • Berry Weinstein, Yonatan Belinkov
As language models become larger, different pruning methods have been proposed to reduce model size.
1 code implementation • EMNLP 2021 • Michael Mendelson, Yonatan Belinkov
Model robustness to bias is often determined by the generalization on carefully designed out-of-distribution datasets.
1 code implementation • *SEM (NAACL) 2022 • Dimion Asael, Zachary Ziegler, Yonatan Belinkov
Many natural language inference (NLI) datasets contain biases that allow models to perform well by only using a biased subset of the input, without considering the remainder features.
1 code implementation • ACL 2021 • Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, Yonatan Belinkov
Targeted syntactic evaluations have demonstrated the ability of language models to perform subject-verb agreement given difficult contexts.
1 code implementation • ICLR 2021 • Rabeeh Karimi Mahabadi, Yonatan Belinkov, James Henderson
Moreover, we show that our VIB model finds sentence representations that are more robust to biases in natural language inference datasets, and thereby obtains better generalization to out-of-domain datasets.
1 code implementation • 16 Apr 2021 • Joe Stacey, Yonatan Belinkov, Marek Rei
Natural Language Inference (NLI) models are known to learn from biases and artefacts within their training data, impacting how well they generalise to other unseen datasets.
no code implementations • CL (ACL) 2022 • Yonatan Belinkov
Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing.
no code implementations • ICLR 2021 • Victor Sanh, Thomas Wolf, Yonatan Belinkov, Alexander M. Rush
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended underlying task.
no code implementations • NeurIPS 2020 • Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, Stuart Shieber
As a case study, we apply this methodology to analyzing gender bias in pre-trained Transformer language models.
no code implementations • 22 Oct 2020 • Yu-An Chung, Yonatan Belinkov, James Glass
We also design probing tasks to study the correlation between the models' pre-training loss and the amount of specific speech information contained in their learned representations.
1 code implementation • EMNLP 2020 • Nadir Durrani, Hassan Sajjad, Fahim Dalvi, Yonatan Belinkov
We found small subsets of neurons to predict linguistic tasks, with lower level tasks (such as morphology) localized in fewer neurons, compared to higher level task of predicting syntax.
no code implementations • ACL 2020 • Yonatan Belinkov, Sebastian Gehrmann, Ellie Pavlick
While deep learning has transformed the natural language processing (NLP) field and impacted the larger computational linguistics community, the rise of neural networks is stained by their opaque nature: It is challenging to interpret the inner workings of neural network models, and explicate their behavior.
1 code implementation • WS 2020 • Abdelrhman Saleh, Tovly Deutsch, Stephen Casper, Yonatan Belinkov, Stuart Shieber
The predominant approach to open-domain dialog generation relies on end-to-end training of neural models on chat datasets.
2 code implementations • ACL 2020 • Mostafa Abdou, Vinit Ravishankar, Maria Barrett, Yonatan Belinkov, Desmond Elliott, Anders Søgaard
Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability.
1 code implementation • ACL 2020 • John M. Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James Glass
We use existing and novel similarity measures that aim to gauge the level of localization of information in the deep models, and facilitate the investigation of which design factors affect model similarity, without requiring any external linguistic annotation.
no code implementations • EACL 2021 • Abhilasha Ravichander, Yonatan Belinkov, Eduard Hovy
Although neural models have achieved impressive results on several NLP benchmarks, little is understood about the mechanisms they use to perform language tasks.
1 code implementation • 26 Apr 2020 • Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis, Jason Huang, Yaron Singer, Stuart Shieber
Common methods for interpreting neural models in natural language processing typically examine either their structure or their behavior, but not both.
1 code implementation • EMNLP 2020 • Fahim Dalvi, Hassan Sajjad, Nadir Durrani, Yonatan Belinkov
Transformer-based deep NLP models are trained using hundreds of millions of parameters, limiting their applicability in computationally constrained environments.
2 code implementations • 8 Nov 2019 • Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, Stuart M. Shieber
We introduce three memory-augmented Recurrent Neural Networks (MARNNs) and explore their capabilities on a series of simple language modeling tasks whose solutions require stack-based mechanisms.
no code implementations • CL 2020 • Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, James Glass
(iii) Do the representations capture lexical semantics?
no code implementations • ICLR 2020 • Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, Nir Shavit
In this work, we present a functional form which approximates well the generalization error in practice.
2 code implementations • ACL 2020 • Rabeeh Karimi Mahabadi, Yonatan Belinkov, James Henderson
We experiment on large-scale natural language inference and fact verification benchmarks, evaluating on out-of-domain datasets that are specifically designed to assess the robustness of models against known biases in the training data.
1 code implementation • SEMEVAL 2019 • Yonatan Belinkov, Adam Poliak, Stuart M. Shieber, Benjamin Van Durme, Alexander M. Rush
Popular Natural Language Inference (NLI) datasets have been shown to be tainted by hypothesis-only biases.
1 code implementation • 9 Jul 2019 • Yonatan Belinkov, Ahmed Ali, James Glass
End-to-end neural network systems for automatic speech recognition (ASR) are trained from acoustic features to text transcriptions.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
1 code implementation • ACL 2019 • Yonatan Belinkov, Adam Poliak, Stuart M. Shieber, Benjamin Van Durme, Alexander M. Rush
In contrast to standard approaches to NLI, our methods predict the probability of a premise given a hypothesis and NLI label, discouraging models from ignoring the premise.
1 code implementation • WS 2019 • Xi-An Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Pino, Hassan Sajjad
We share the findings of the first shared task on improving robustness of Machine Translation (MT).
1 code implementation • NAACL 2019 • Gabriel Grand, Yonatan Belinkov
Visual question answering (VQA) models have been shown to over-rely on linguistic biases in VQA datasets, answering questions "blindly" without considering visual context.
no code implementations • WS 2019 • Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, Stuart M. Shieber
In this paper, we systematically assess the ability of standard recurrent networks to perform dynamic counting and to encode hierarchical representations.
no code implementations • WS 2019 • Jesse Vig, Yonatan Belinkov
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks.
1 code implementation • ACL 2019 • Hongyin Luo, Lan Jiang, Yonatan Belinkov, James Glass
In this work, we propose a method that improves language modeling by learning to align the given context and the following phrase.
Ranked #15 on
Language Modelling
on WikiText-103
no code implementations • NAACL 2019 • Nadir Durrani, Fahim Dalvi, Hassan Sajjad, Yonatan Belinkov, Preslav Nakov
Recent work has shown that contextualized word representations derived from neural machine translation are a viable alternative to such from simple word predictions tasks.
no code implementations • NAACL 2019 • Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, Noah A. Smith
Contextual word representations derived from large-scale neural language models are successful across a diverse set of NLP tasks, suggesting that they encode useful and transferable features of language.
no code implementations • 2 Feb 2019 • Michael Hahn, Frank Keller, Yonatan Bisk, Yonatan Belinkov
Also, transpositions are more difficult than misspellings, and a high error rate increases difficulty for all words, including correct ones.
no code implementations • TACL 2019 • Yonatan Belinkov, James Glass
The field of natural language processing has seen impressive progress in recent years, with neural network models replacing many of the traditional systems.
1 code implementation • 21 Dec 2018 • Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, James Glass
We further present a comprehensive analysis of neurons with the aim to address the following questions: i) how localized or distributed are different linguistic properties in the models?
2 code implementations • 21 Dec 2018 • Fahim Dalvi, Avery Nortonsmith, D. Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, James Glass
We present a toolkit to facilitate the interpretation and understanding of neural network models.
no code implementations • ICLR 2019 • Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James Glass
Neural machine translation (NMT) models learn representations containing substantial linguistic information.
1 code implementation • WS 2019 • Mirac Suzgun, Yonatan Belinkov, Stuart M. Shieber
Recurrent Neural Networks (RNNs) are theoretically Turing-complete and established themselves as a dominant model for language processing.
1 code implementation • 11 Sep 2018 • Yonatan Belinkov, Alexander Magidow, Alberto Barrón-Cedeño, Avi Shmidman, Maxim Romanov
Arabic is a widely-spoken language with a long and rich history, but existing corpora and language technology focus mostly on modern Arabic and its varieties.
1 code implementation • NAACL 2018 • Adam Poliak, Yonatan Belinkov, James Glass, Benjamin Van Durme
We propose a process for investigating the extent to which sentence representations arising from neural machine translation (NMT) systems encode distinct semantic phenomena.
1 code implementation • IJCNLP 2017 • Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James Glass
In this paper, we investigate the representations learned at different layers of NMT encoders.
3 code implementations • ICLR 2018 • Yonatan Belinkov, Yonatan Bisk
Character-based neural machine translation (NMT) models alleviate out-of-vocabulary issues, learn morphology, and move us closer to completely end-to-end translation systems.
no code implementations • IJCNLP 2017 • Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Stephan Vogel
End-to-end training makes the neural machine translation (NMT) architecture simpler, yet elegant compared to traditional statistical machine translation (SMT).
1 code implementation • NeurIPS 2017 • Yonatan Belinkov, James Glass
In this work, we analyze the speech representations learned by a deep end-to-end model that is based on convolutional and recurrent layers, and trained with a connectionist temporal classification (CTC) loss.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • ACL 2017 • Hassan Sajjad, Fahim Dalvi, Nadir Durrani, Ahmed Abdelali, Yonatan Belinkov, Stephan Vogel
Word segmentation plays a pivotal role in improving any Arabic NLP application.
no code implementations • IWSLT 2017 • Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Yonatan Belinkov, Stephan Vogel
Model stacking works best when training begins with the furthest out-of-domain data and the model is incrementally fine-tuned with the next furthest domain and so on.
1 code implementation • ACL 2017 • Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, James Glass
Neural machine translation (MT) models obtain state-of-the-art performance while maintaining a simple, end-to-end architecture.
no code implementations • WS 2016 • Yonatan Belinkov, Alexander Magidow, Maxim Romanov, Avi Shmidman, Moshe Koppel
Arabic is a widely-spoken language with a rich and long history spanning more than fourteen centuries.
no code implementations • COLING 2016 • Salvatore Romeo, Giovanni Da San Martino, Alberto Barr{\'o}n-Cede{\~n}o, Aless Moschitti, ro, Yonatan Belinkov, Wei-Ning Hsu, Yu Zhang, Mitra Mohtarami, James Glass
In real-world data, e. g., from Web forums, text is often contaminated with redundant or irrelevant content, which leads to introducing noise in machine learning algorithms.
no code implementations • 25 Sep 2016 • Yonatan Belinkov, James Glass
Machine translation between Arabic and Hebrew has so far been limited by a lack of parallel corpora, despite the political and cultural importance of this language pair.
1 code implementation • WS 2016 • Yonatan Belinkov, James Glass
Discriminating between closely-related language varieties is considered a challenging and important task.
3 code implementations • 15 Aug 2016 • Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, Yoav Goldberg
The analysis sheds light on the relative strengths of different sentence embedding methods with respect to these low level prediction tasks, and on the effect of the encoded vector's dimensionality on the resulting representations.
no code implementations • TACL 2014 • Yonatan Belinkov, Tao Lei, Regina Barzilay, Amir Globerson
In this paper, we show that word vector representations can yield significant PP attachment performance gains.