Search Results for author: Yonatan Bilu

Found 18 papers, 0 papers with code

The workweek is the best time to start a family -- A Study of GPT-2 Based Claim Generation

no code implementations Findings of the Association for Computational Linguistics 2020 Shai Gretz, Yonatan Bilu, Edo Cohen-Karlik, Noam Slonim

Argument generation is a challenging task whose research is timely considering its potential impact on social media and the dissemination of information.

Retrieval

Multilingual Argument Mining: Datasets and Analysis

no code implementations Findings of the Association for Computational Linguistics 2020 Orith Toledo-Ronen, Matan Orbach, Yonatan Bilu, Artem Spector, Noam Slonim

The growing interest in argument mining and computational argumentation brings with it a plethora of Natural Language Understanding (NLU) tasks and corresponding datasets.

Argument Mining Machine Translation +3

What if we had no Wikipedia? Domain-independent Term Extraction from a Large News Corpus

no code implementations17 Sep 2020 Yonatan Bilu, Shai Gretz, Edo Cohen, Noam Slonim

One of the most impressive human endeavors of the past two decades is the collection and categorization of human knowledge in the free and accessible format that is Wikipedia.

Benchmarking Term Extraction

Financial Event Extraction Using Wikipedia-Based Weak Supervision

no code implementations WS 2019 Liat Ein-Dor, Ariel Gera, Orith Toledo-Ronen, Alon Halfon, Benjamin Sznajder, Lena Dankin, Yonatan Bilu, Yoav Katz, Noam Slonim

Extraction of financial and economic events from text has previously been done mostly using rule-based methods, with more recent works employing machine learning techniques.

BIG-bench Machine Learning Event Extraction

Argument Invention from First Principles

no code implementations ACL 2019 Yonatan Bilu, Ariel Gera, Daniel Hershcovich, Benjamin Sznajder, Dan Lahav, Guy Moshkowich, Anael Malet, Assaf Gavron, Noam Slonim

In this work we aim to explicitly define a taxonomy of such principled recurring arguments, and, given a controversial topic, to automatically identify which of these arguments are relevant to the topic.

Controversy in Context

no code implementations20 Aug 2019 Benjamin Sznajder, Ariel Gera, Yonatan Bilu, Dafna Sheinwald, Ella Rabinovich, Ranit Aharonov, David Konopnicki, Noam Slonim

With the growing interest in social applications of Natural Language Processing and Computational Argumentation, a natural question is how controversial a given concept is.

Towards Effective Rebuttal: Listening Comprehension using Corpus-Wide Claim Mining

no code implementations WS 2019 Tamar Lavee, Matan Orbach, Lili Kotlerman, Yoav Kantor, Shai Gretz, Lena Dankin, Shachar Mirkin, Michal Jacovi, Yonatan Bilu, Ranit Aharonov, Noam Slonim

To this end, we collected a large dataset of $400$ speeches in English discussing $200$ controversial topics, mined claims for each topic, and asked annotators to identify the mined claims mentioned in each speech.

Computational Argumentation Quality Assessment in Natural Language

no code implementations EACL 2017 Henning Wachsmuth, Nona Naderi, Yufang Hou, Yonatan Bilu, Vinodkumar Prabhakaran, Tim Alberdingk Thijm, Graeme Hirst, Benno Stein

Research on computational argumentation faces the problem of how to automatically assess the quality of an argument or argumentation.

Cannot find the paper you are looking for? You can Submit a new open access paper.