Search Results for author: Yong Yu

Found 163 papers, 80 papers with code

Nested Named Entity Recognition with Span-level Graphs

no code implementations ACL 2022 Juncheng Wan, Dongyu Ru, Weinan Zhang, Yong Yu

In this work, we try to improve the span representation by utilizing retrieval-based span-level graphs, connecting spans and entities in the training data based on n-gram features.

named-entity-recognition Named Entity Recognition +3

Beyond Positive History: Re-ranking with List-level Hybrid Feedback

no code implementations28 Oct 2024 Muyan Weng, Yunjia Xi, Weiwen Liu, Bo Chen, Jianghao Lin, Ruiming Tang, Weinan Zhang, Yong Yu

It captures user's preferences and behavior patterns with three modules: a Disentangled Interest Miner to disentangle the user's preferences into interests and disinterests, a Sequential Preference Mixer to learn users' entangled preferences considering the context of feedback, and a Comparison-aware Pattern Extractor to capture user's behavior patterns within each list.

Contrastive Learning Recommendation Systems +1

Learning ID-free Item Representation with Token Crossing for Multimodal Recommendation

no code implementations25 Oct 2024 Kangning Zhang, Jiarui Jin, Yingjie Qin, Ruilong Su, Jianghao Lin, Yong Yu, Weinan Zhang

Furthermore, the unique nature of item-specific ID embeddings hinders the information exchange among related items and the spatial requirement of ID embeddings increases with the scale of item.

Multimodal Recommendation Quantization

Unleashing the Potential of Multi-Channel Fusion in Retrieval for Personalized Recommendations

no code implementations21 Oct 2024 JunJie Huang, Jiarui Qin, Jianghao Lin, Ziming Feng, Yong Yu, Weinan Zhang

Despite advancements in individual retrieval methods, multi-channel fusion, the process of efficiently merging multi-channel retrieval results, remains underexplored.

Bayesian Optimization Recommendation Systems +1

Wireless-Friendly Window Position Optimization for RIS-Aided Outdoor-to-Indoor Networks based on Multi-Modal Large Language Model

no code implementations7 Oct 2024 Jinbo Hou, Kehai Qiu, Zitian Zhang, Yong Yu, Kezhi Wang, Stefano Capolongo, Jiliang Zhang, Zeyang Li, Jie Zhang

This paper aims to simultaneously optimize indoor wireless and daylight performance by adjusting the positions of windows and the beam directions of window-deployed reconfigurable intelligent surfaces (RISs) for RIS-aided outdoor-to-indoor (O2I) networks utilizing large language models (LLM) as optimizers.

Language Modelling Large Language Model +1

World Model-based Perception for Visual Legged Locomotion

no code implementations25 Sep 2024 Hang Lai, Jiahang Cao, Jiafeng Xu, Hongtao Wu, Yunfeng Lin, Tao Kong, Yong Yu, Weinan Zhang

To address this issue, traditional methods attempt to learn a teacher policy with access to privileged information first and then learn a student policy to imitate the teacher's behavior with visual input.

RethinkMCTS: Refining Erroneous Thoughts in Monte Carlo Tree Search for Code Generation

no code implementations15 Sep 2024 Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruiming Tang, Yasheng Wang, Yong Yu, Weinan Zhang

More importantly, we construct verbal feedback from fine-grained code execution feedback to refine erroneous thoughts during the search.

Code Generation HumanEval

A Survey on Diffusion Models for Recommender Systems

1 code implementation8 Sep 2024 Jianghao Lin, Jiaqi Liu, Jiachen Zhu, Yunjia Xi, Chengkai Liu, Yangtian Zhang, Yong Yu, Weinan Zhang

While traditional recommendation techniques have made significant strides in the past decades, they still suffer from limited generalization performance caused by factors like inadequate collaborative signals, weak latent representations, and noisy data.

Data Augmentation Recommendation Systems +1

A Decoding Acceleration Framework for Industrial Deployable LLM-based Recommender Systems

1 code implementation11 Aug 2024 Yunjia Xi, Hangyu Wang, Bo Chen, Jianghao Lin, Menghui Zhu, Weiwen Liu, Ruiming Tang, Weinan Zhang, Yong Yu

This generation inefficiency stems from the autoregressive nature of LLMs, and a promising direction for acceleration is speculative decoding, a Draft-then-Verify paradigm that increases the number of generated tokens per decoding step.

Recommendation Systems Retrieval

Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation

no code implementations7 Aug 2024 Jiachen Zhu, Jianghao Lin, Xinyi Dai, Bo Chen, Rong Shan, Jieming Zhu, Ruiming Tang, Yong Yu, Weinan Zhang

Thus, LLMs only see a small fraction of the datasets (e. g., less than 10%) instead of the whole datasets, limiting their exposure to the full training space.

Logical Reasoning Recommendation Systems +1

A Comprehensive Survey on Retrieval Methods in Recommender Systems

no code implementations11 Jul 2024 JunJie Huang, Jizheng Chen, Jianghao Lin, Jiarui Qin, Ziming Feng, Weinan Zhang, Yong Yu

By detailing the retrieval stage, which is fundamental for effective recommendation, this survey aims to bridge the existing knowledge gap and serve as a cornerstone for researchers interested in optimizing this critical component of cascade recommender systems.

Benchmarking Recommendation Systems +2

MemoCRS: Memory-enhanced Sequential Conversational Recommender Systems with Large Language Models

1 code implementation6 Jul 2024 Yunjia Xi, Weiwen Liu, Jianghao Lin, Bo Chen, Ruiming Tang, Weinan Zhang, Yong Yu

The preferences embedded in the user's historical dialogue sessions and the current session exhibit continuity and sequentiality, and we refer to CRSs with this characteristic as sequential CRSs.

Recommendation Systems

Cloud-Edge-Terminal Collaborative AIGC for Autonomous Driving

no code implementations2 Jul 2024 Jianan Zhang, Zhiwei Wei, Boxun Liu, Xiayi Wang, Yong Yu, Rongqing Zhang

In dynamic autonomous driving environment, Artificial Intelligence-Generated Content (AIGC) technology can supplement vehicle perception and decision making by leveraging models' generative and predictive capabilities, and has the potential to enhance motion planning, trajectory prediction and traffic simulation.

Autonomous Driving Decision Making +3

SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model

1 code implementation1 Jul 2024 Lingyue Fu, Hao Guan, Kounianhua Du, Jianghao Lin, Wei Xia, Weinan Zhang, Ruiming Tang, Yasheng Wang, Yong Yu

Knowledge Tracing (KT) aims to determine whether students will respond correctly to the next question, which is a crucial task in intelligent tutoring systems (ITS).

Knowledge Tracing Language Modelling +1

Large Language Models Make Sample-Efficient Recommender Systems

no code implementations4 Jun 2024 Jianghao Lin, Xinyi Dai, Rong Shan, Bo Chen, Ruiming Tang, Yong Yu, Weinan Zhang

Hence, we propose and verify our core viewpoint: Large Language Models Make Sample-Efficient Recommender Systems.

Recommendation Systems

Long-Horizon Rollout via Dynamics Diffusion for Offline Reinforcement Learning

1 code implementation29 May 2024 Hanye Zhao, Xiaoshen Han, Zhengbang Zhu, Minghuan Liu, Yong Yu, Weinan Zhang

We propose Dynamics Diffusion, short as DyDiff, which can inject information from the learning policy to DMs iteratively.

Decision Making reinforcement-learning +1

Look into the Future: Deep Contextualized Sequential Recommendation

no code implementations23 May 2024 Lei Zheng, Ning li, Yanhuan Huang, Ruiwen Xu, Weinan Zhang, Yong Yu

In LIFT, the context of a target user's interaction is represented based on i) his own past behaviors and ii) the past and future behaviors of the retrieved similar interactions from other users.

Click-Through Rate Prediction Retrieval +1

Learning Structure and Knowledge Aware Representation with Large Language Models for Concept Recommendation

no code implementations21 May 2024 Qingyao Li, Wei Xia, Kounianhua Du, Qiji Zhang, Weinan Zhang, Ruiming Tang, Yong Yu

However, integrating LLMs into concept recommendation presents two urgent challenges: 1) How to construct text for concepts that effectively incorporate the human knowledge system?

Contrastive Learning Knowledge Tracing +1

FINED: Feed Instance-Wise Information Need with Essential and Disentangled Parametric Knowledge from the Past

no code implementations20 May 2024 Kounianhua Du, Jizheng Chen, Jianghao Lin, Menghui Zhu, Bo Chen, Shuai Li, Yong Yu, Weinan Zhang

In this paper, we propose FINED to Feed INstance-wise information need with Essential and Disentangled parametric knowledge from past data for recommendation enhancement.

Disentanglement Memorization

CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation

no code implementations3 May 2024 Kounianhua Du, Jizheng Chen, Renting Rui, Huacan Chai, Lingyue Fu, Wei Xia, Yasheng Wang, Ruiming Tang, Yong Yu, Weinan Zhang

Despite the intelligence shown by the general large language models, their specificity in code generation can still be improved due to the syntactic gap and mismatched vocabulary existing among natural language and different programming languages.

Code Generation Language Modelling +3

Retrieval and Distill: A Temporal Data Shift-Free Paradigm for Online Recommendation System

no code implementations24 Apr 2024 Lei Zheng, Ning li, Weinan Zhang, Yong Yu

Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data.

Recommendation Systems Retrieval

DREAM: A Dual Representation Learning Model for Multimodal Recommendation

no code implementations17 Apr 2024 Kangning Zhang, Yingjie Qin, Jiarui Jin, Yifan Liu, Ruilong Su, Weinan Zhang, Yong Yu

For sufficient information extraction, we introduce separate dual lines, including Behavior Line and Modal Line, in which the Modal-specific Encoder is applied to empower modal representations.

Multimodal Recommendation Representation Learning

Recall-Augmented Ranking: Enhancing Click-Through Rate Prediction Accuracy with Cross-Stage Data

no code implementations15 Apr 2024 JunJie Huang, Guohao Cai, Jieming Zhu, Zhenhua Dong, Ruiming Tang, Weinan Zhang, Yong Yu

RAR consists of two key sub-modules, which synergistically gather information from a vast pool of look-alike users and recall items, resulting in enriched user representations.

Click-Through Rate Prediction

Emerging Platforms Meet Emerging LLMs: A Year-Long Journey of Top-Down Development

no code implementations14 Apr 2024 Siyuan Feng, Jiawei Liu, Ruihang Lai, Charlie F. Ruan, Yong Yu, Lingming Zhang, Tianqi Chen

While a traditional bottom-up development pipeline fails to close the gap timely, we introduce TapML, a top-down approach and tooling designed to streamline the deployment of ML systems on diverse platforms, optimized for developer productivity.

M-scan: A Multi-Scenario Causal-driven Adaptive Network for Recommendation

no code implementations11 Apr 2024 Jiachen Zhu, Yichao Wang, Jianghao Lin, Jiarui Qin, Ruiming Tang, Weinan Zhang, Yong Yu

Furthermore, through causal graph analysis, we have discovered that the scenario itself directly influences click behavior, yet existing approaches directly incorporate data from other scenarios during the training of the current scenario, leading to prediction biases when they directly utilize click behaviors from other scenarios to train models.

counterfactual Counterfactual Inference

Play to Your Strengths: Collaborative Intelligence of Conventional Recommender Models and Large Language Models

no code implementations25 Mar 2024 Yunjia Xi, Weiwen Liu, Jianghao Lin, Chuhan Wu, Bo Chen, Ruiming Tang, Weinan Zhang, Yong Yu

The rise of large language models (LLMs) has opened new opportunities in Recommender Systems (RSs) by enhancing user behavior modeling and content understanding.

Language Modelling Large Language Model +1

AlignRec: Aligning and Training in Multimodal Recommendations

1 code implementation19 Mar 2024 Yifan Liu, Kangning Zhang, Xiangyuan Ren, Yanhua Huang, Jiarui Jin, Yingjie Qin, Ruilong Su, Ruiwen Xu, Yong Yu, Weinan Zhang

Each alignment is characterized by a specific objective function and is integrated into our multimodal recommendation framework.

Multimodal Recommendation

TRAD: Enhancing LLM Agents with Step-Wise Thought Retrieval and Aligned Decision

1 code implementation10 Mar 2024 Ruiwen Zhou, Yingxuan Yang, Muning Wen, Ying Wen, Wenhao Wang, Chunling Xi, Guoqiang Xu, Yong Yu, Weinan Zhang

Among these works, many of them utilize in-context examples to achieve generalization without the need for fine-tuning, while few of them have considered the problem of how to select and effectively utilize these examples.

Language Modelling Large Language Model +2

Looking Ahead to Avoid Being Late: Solving Hard-Constrained Traveling Salesman Problem

no code implementations8 Mar 2024 Jingxiao Chen, Ziqin Gong, Minghuan Liu, Jun Wang, Yong Yu, Weinan Zhang

To overcome this problem and to have an effective solution against hard constraints, we proposed a novel learning-based method that uses looking-ahead information as the feature to improve the legality of TSP with Time Windows (TSPTW) solutions.

Traveling Salesman Problem

Towards Efficient and Effective Unlearning of Large Language Models for Recommendation

1 code implementation6 Mar 2024 Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, Yong Yu

However, in order to protect user privacy and optimize utility, it is also crucial for LLMRec to intentionally forget specific user data, which is generally referred to as recommendation unlearning.

World Knowledge

Offline Fictitious Self-Play for Competitive Games

no code implementations29 Feb 2024 Jingxiao Chen, Weiji Xie, Weinan Zhang, Yong Yu, Ying Wen

Firstly, unaware of the game structure, it is impossible to interact with the opponents and conduct a major learning paradigm, self-play, for competitive games.

Offline RL Reinforcement Learning (RL)

InfoRank: Unbiased Learning-to-Rank via Conditional Mutual Information Minimization

no code implementations23 Jan 2024 Jiarui Jin, Zexue He, Mengyue Yang, Weinan Zhang, Yong Yu, Jun Wang, Julian McAuley

Subsequently, we minimize the mutual information between the observation estimation and the relevance estimation conditioned on the input features.

Learning-To-Rank Recommendation Systems

D2K: Turning Historical Data into Retrievable Knowledge for Recommender Systems

no code implementations21 Jan 2024 Jiarui Qin, Weiwen Liu, Ruiming Tang, Weinan Zhang, Yong Yu

A personalized knowledge adaptation unit is devised to effectively exploit the information from the knowledge base by adapting the retrieved knowledge to the target samples.

Recommendation Systems

Adaptive Control Strategy for Quadruped Robots in Actuator Degradation Scenarios

1 code implementation29 Dec 2023 Xinyuan Wu, Wentao Dong, Hang Lai, Yong Yu, Ying Wen

Quadruped robots have strong adaptability to extreme environments but may also experience faults.

Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges

no code implementations27 Dec 2023 Qingyao Li, Lingyue Fu, Weiming Zhang, Xianyu Chen, Jingwei Yu, Wei Xia, Weinan Zhang, Ruiming Tang, Yong Yu

Solving the problems encountered by students poses a significant challenge for traditional deep learning models, as it requires not only a broad spectrum of subject knowledge but also the ability to understand what constitutes a student's individual difficulties.

Question Answering

FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction

1 code implementation30 Oct 2023 Hangyu Wang, Jianghao Lin, Xiangyang Li, Bo Chen, Chenxu Zhu, Ruiming Tang, Weinan Zhang, Yong Yu

The traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality, which capture the collaborative signals via feature interaction modeling.

Click-Through Rate Prediction Contrastive Learning +1

ROMO: Retrieval-enhanced Offline Model-based Optimization

1 code implementation11 Oct 2023 Mingcheng Chen, Haoran Zhao, Yuxiang Zhao, Hulei Fan, Hongqiao Gao, Yong Yu, Zheng Tian

Data-driven black-box model-based optimization (MBO) problems arise in a great number of practical application scenarios, where the goal is to find a design over the whole space maximizing a black-box target function based on a static offline dataset.

Retrieval

CSPRD: A Financial Policy Retrieval Dataset for Chinese Stock Market

1 code implementation8 Sep 2023 JinYuan Wang, Hai Zhao, Zhong Wang, Zeyang Zhu, Jinhao Xie, Yong Yu, Yongjian Fei, Yue Huang, Dawei Cheng

In recent years, great advances in pre-trained language models (PLMs) have sparked considerable research focus and achieved promising performance on the approach of dense passage retrieval, which aims at retrieving relative passages from massive corpus with given questions.

Passage Retrieval Retrieval

CodeApex: A Bilingual Programming Evaluation Benchmark for Large Language Models

1 code implementation5 Sep 2023 Lingyue Fu, Huacan Chai, Shuang Luo, Kounianhua Du, Weiming Zhang, Longteng Fan, Jiayi Lei, Renting Rui, Jianghao Lin, Yuchen Fang, Yifan Liu, Jingkuan Wang, Siyuan Qi, Kangning Zhang, Weinan Zhang, Yong Yu

With the emergence of Large Language Models (LLMs), there has been a significant improvement in the programming capabilities of models, attracting growing attention from researchers.

Code Generation Multiple-choice

ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

1 code implementation22 Aug 2023 Jianghao Lin, Rong Shan, Chenxu Zhu, Kounianhua Du, Bo Chen, Shigang Quan, Ruiming Tang, Yong Yu, Weinan Zhang

With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently.

Data Augmentation Language Modelling +3

Replace Scoring with Arrangement: A Contextual Set-to-Arrangement Framework for Learning-to-Rank

no code implementations5 Aug 2023 Jiarui Jin, Xianyu Chen, Weinan Zhang, Mengyue Yang, Yang Wang, Yali Du, Yong Yu, Jun Wang

Notice that these ranking metrics do not consider the effects of the contextual dependence among the items in the list, we design a new family of simulation-based ranking metrics, where existing metrics can be regarded as special cases.

Learning-To-Rank

MAP: A Model-agnostic Pretraining Framework for Click-through Rate Prediction

1 code implementation3 Aug 2023 Jianghao Lin, Yanru Qu, Wei Guo, Xinyi Dai, Ruiming Tang, Yong Yu, Weinan Zhang

The large capacity of neural models helps digest such massive amounts of data under the supervised learning paradigm, yet they fail to utilize the substantial data to its full potential, since the 1-bit click signal is not sufficient to guide the model to learn capable representations of features and instances.

Binary Classification Click-Through Rate Prediction +1

Learning Multi-Agent Intention-Aware Communication for Optimal Multi-Order Execution in Finance

no code implementations6 Jul 2023 Yuchen Fang, Zhenggang Tang, Kan Ren, Weiqing Liu, Li Zhao, Jiang Bian, Dongsheng Li, Weinan Zhang, Yong Yu, Tie-Yan Liu

Order execution is a fundamental task in quantitative finance, aiming at finishing acquisition or liquidation for a number of trading orders of the specific assets.

Reinforcement Learning (RL)

Towards Open-World Recommendation with Knowledge Augmentation from Large Language Models

1 code implementation19 Jun 2023 Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang, Weinan Zhang, Rui Zhang, Yong Yu

In this work, we propose an Open-World Knowledge Augmented Recommendation Framework with Large Language Models, dubbed KAR, to acquire two types of external knowledge from LLMs -- the reasoning knowledge on user preferences and the factual knowledge on items.

Music Recommendation Recommendation Systems +1

How Can Recommender Systems Benefit from Large Language Models: A Survey

1 code implementation9 Jun 2023 Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong liu, Chuhan Wu, Xiangyang Li, Chenxu Zhu, Huifeng Guo, Yong Yu, Ruiming Tang, Weinan Zhang

In this paper, we conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.

Ethics Feature Engineering +5

Set-to-Sequence Ranking-based Concept-aware Learning Path Recommendation

no code implementations7 Jun 2023 Xianyu Chen, Jian Shen, Wei Xia, Jiarui Jin, Yakun Song, Weinan Zhang, Weiwen Liu, Menghui Zhu, Ruiming Tang, Kai Dong, Dingyin Xia, Yong Yu

Noticing that existing approaches fail to consider the correlations of concepts in the path, we propose a novel framework named Set-to-Sequence Ranking-based Concept-aware Learning Path Recommendation (SRC), which formulates the recommendation task under a set-to-sequence paradigm.

Decoder Knowledge Tracing +1

MADiff: Offline Multi-agent Learning with Diffusion Models

1 code implementation27 May 2023 Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon, Weinan Zhang

MADiff is realized with an attention-based diffusion model to model the complex coordination among behaviors of multiple agents.

Offline RL Trajectory Prediction

Refined Edge Usage of Graph Neural Networks for Edge Prediction

no code implementations25 Dec 2022 Jiarui Jin, Yangkun Wang, Weinan Zhang, Quan Gan, Xiang Song, Yong Yu, Zheng Zhang, David Wipf

However, existing methods lack elaborate design regarding the distinctions between two tasks that have been frequently overlooked: (i) edges only constitute the topology in the node classification task but can be used as both the topology and the supervisions (i. e., labels) in the edge prediction task; (ii) the node classification makes prediction over each individual node, while the edge prediction is determinated by each pair of nodes.

Link Prediction Node Classification

Sim-to-Real Transfer for Quadrupedal Locomotion via Terrain Transformer

no code implementations15 Dec 2022 Hang Lai, Weinan Zhang, Xialin He, Chen Yu, Zheng Tian, Yong Yu, Jun Wang

Deep reinforcement learning has recently emerged as an appealing alternative for legged locomotion over multiple terrains by training a policy in physical simulation and then transferring it to the real world (i. e., sim-to-real transfer).

Decision Making Deep Reinforcement Learning

A Bird's-eye View of Reranking: from List Level to Page Level

1 code implementation17 Nov 2022 Yunjia Xi, Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Rui Zhang, Ruiming Tang, Yong Yu

Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists.

Recommendation Systems

Understanding or Manipulation: Rethinking Online Performance Gains of Modern Recommender Systems

no code implementations11 Oct 2022 Zhengbang Zhu, Rongjun Qin, JunJie Huang, Xinyi Dai, Yang Yu, Yong Yu, Weinan Zhang

The increase in the measured performance, however, can have two possible attributions: a better understanding of user preferences, and a more proactive ability to utilize human bounded rationality to seduce user over-consumption.

Benchmarking Sequential Recommendation

Multi-Scale User Behavior Network for Entire Space Multi-Task Learning

no code implementations3 Aug 2022 Jiarui Jin, Xianyu Chen, Weinan Zhang, Yuanbo Chen, Zaifan Jiang, Zekun Zhu, Zhewen Su, Yong Yu

Modelling the user's multiple behaviors is an essential part of modern e-commerce, whose widely adopted application is to jointly optimize click-through rate (CTR) and conversion rate (CVR) predictions.

Multi-Task Learning Survival Analysis

TensorIR: An Abstraction for Automatic Tensorized Program Optimization

2 code implementations9 Jul 2022 Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang Lai, Zihao Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, Tianqi Chen

Finally, we build an end-to-end framework on top of our abstraction to automatically optimize deep learning models for given tensor computation primitives.

BIG-bench Machine Learning Deep Learning

An F-shape Click Model for Information Retrieval on Multi-block Mobile Pages

1 code implementation17 Jun 2022 Lingyue Fu, Jianghao Lin, Weiwen Liu, Ruiming Tang, Weinan Zhang, Rui Zhang, Yong Yu

However, with the development of user interface (UI) design, the layout of displayed items on a result page tends to be multi-block (i. e., multi-list) style instead of a single list, which requires different assumptions to model user behaviors more accurately.

Information Retrieval Retrieval

Multi-Level Interaction Reranking with User Behavior History

1 code implementation20 Apr 2022 Yunjia Xi, Weiwen Liu, Jieming Zhu, Xilong Zhao, Xinyi Dai, Ruiming Tang, Weinan Zhang, Rui Zhang, Yong Yu

MIR combines low-level cross-item interaction and high-level set-to-list interaction, where we view the candidate items to be reranked as a set and the users' behavior history in chronological order as a list.

Recommendation Systems

Plan Your Target and Learn Your Skills: Transferable State-Only Imitation Learning via Decoupled Policy Optimization

2 code implementations4 Mar 2022 Minghuan Liu, Zhengbang Zhu, Yuzheng Zhuang, Weinan Zhang, Jianye Hao, Yong Yu, Jun Wang

Recent progress in state-only imitation learning extends the scope of applicability of imitation learning to real-world settings by relieving the need for observing expert actions.

Imitation Learning Transfer Learning

Multi-View Graph Representation for Programming Language Processing: An Investigation into Algorithm Detection

1 code implementation25 Feb 2022 Ting Long, Yutong Xie, Xianyu Chen, Weinan Zhang, Qinxiang Cao, Yong Yu

We thoroughly evaluate our proposed MVG approach in the context of algorithm detection, an important and challenging subfield of PLP.

Graph Neural Network

Who to Watch Next: Two-side Interactive Networks for Live Broadcast Recommendation

no code implementations9 Feb 2022 Jiarui Jin, Xianyu Chen, Yuanbo Chen, Weinan Zhang, Renting Rui, Zaifan Jiang, Zhewen Su, Yong Yu

With the prevalence of live broadcast business nowadays, a new type of recommendation service, called live broadcast recommendation, is widely used in many mobile e-commerce Apps.

Retrieval

Learn over Past, Evolve for Future: Search-based Time-aware Recommendation with Sequential Behavior Data

no code implementations7 Feb 2022 Jiarui Jin, Xianyu Chen, Weinan Zhang, JunJie Huang, Ziming Feng, Yong Yu

More concretely, we first design a search-based module to retrieve a user's relevant historical behaviors, which are then mixed up with her recent records to be fed into a time-aware sequential network for capturing her time-sensitive demands.

Click-Through Rate Prediction

Efficient Policy Space Response Oracles

no code implementations28 Jan 2022 Ming Zhou, Jingxiao Chen, Ying Wen, Weinan Zhang, Yaodong Yang, Yong Yu, Jun Wang

Policy Space Response Oracle methods (PSRO) provide a general solution to learn Nash equilibrium in two-player zero-sum games but suffer from two drawbacks: (1) the computation inefficiency due to the need for consistent meta-game evaluation via simulations, and (2) the exploration inefficiency due to finding the best response against a fixed meta-strategy at every epoch.

Efficient Exploration

Generative Adversarial Exploration for Reinforcement Learning

no code implementations27 Jan 2022 Weijun Hong, Menghui Zhu, Minghuan Liu, Weinan Zhang, Ming Zhou, Yong Yu, Peng Sun

Exploration is crucial for training the optimal reinforcement learning (RL) policy, where the key is to discriminate whether a state visiting is novel.

Generative Adversarial Network Montezuma's Revenge +3

PAEG: Phrase-level Adversarial Example Generation for Neural Machine Translation

no code implementations COLING 2022 Juncheng Wan, Jian Yang, Shuming Ma, Dongdong Zhang, Weinan Zhang, Yong Yu, Zhoujun Li

While end-to-end neural machine translation (NMT) has achieved impressive progress, noisy input usually leads models to become fragile and unstable.

Machine Translation NMT +1

QA4PRF: A Question Answering based Framework for Pseudo Relevance Feedback

no code implementations16 Nov 2021 Handong Ma, Jiawei Hou, Chenxu Zhu, Weinan Zhang, Ruiming Tang, Jincai Lai, Jieming Zhu, Xiuqiang He, Yong Yu

Pseudo relevance feedback (PRF) automatically performs query expansion based on top-retrieved documents to better represent the user's information need so as to improve the search results.

Question Answering Semantic Similarity +1

AIM: Automatic Interaction Machine for Click-Through Rate Prediction

1 code implementation5 Nov 2021 Chenxu Zhu, Bo Chen, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li, Yong Yu

To address these three issues mentioned above, we propose Automatic Interaction Machine (AIM) with three core components, namely, Feature Interaction Search (FIS), Interaction Function Search (IFS) and Embedding Dimension Search (EDS), to select significant feature interactions, appropriate interaction functions and necessary embedding dimensions automatically in a unified framework.

Click-Through Rate Prediction

Context-aware Reranking with Utility Maximization for Recommendation

no code implementations18 Oct 2021 Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu, Xiuqiang He, Yong Yu

As a critical task for large-scale commercial recommender systems, reranking has shown the potential of improving recommendation results by uncovering mutual influence among items.

counterfactual Graph Attention +2

Why Propagate Alone? Parallel Use of Labels and Features on Graphs

no code implementations ICLR 2022 Yangkun Wang, Jiarui Jin, Weinan Zhang, Yongyi Yang, Jiuhai Chen, Quan Gan, Yong Yu, Zheng Zhang, Zengfeng Huang, David Wipf

In this regard, it has recently been proposed to use a randomly-selected portion of the training labels as GNN inputs, concatenated with the original node features for making predictions on the remaining labels.

Node Property Prediction Property Prediction

Inductive Relation Prediction Using Analogy Subgraph Embeddings

no code implementations ICLR 2022 Jiarui Jin, Yangkun Wang, Kounianhua Du, Weinan Zhang, Zheng Zhang, David Wipf, Yong Yu, Quan Gan

Prevailing methods for relation prediction in heterogeneous graphs aim at learning latent representations (i. e., embeddings) of observed nodes and relations, and thus are limited to the transductive setting where the relation types must be known during training.

Inductive Bias Inductive Relation Prediction +2

Graph-Enhanced Exploration for Goal-oriented Reinforcement Learning

no code implementations ICLR 2022 Jiarui Jin, Sijin Zhou, Weinan Zhang, Tong He, Yong Yu, Rasool Fakoor

Goal-oriented Reinforcement Learning (GoRL) is a promising approach for scaling up RL techniques on sparse reward environments requiring long horizon planning.

continuous-control Continuous Control +4

Task-wise Split Gradient Boosting Trees for Multi-center Diabetes Prediction

1 code implementation16 Aug 2021 Mingcheng Chen, Zhenghui Wang, Zhiyun Zhao, Weinan Zhang, Xiawei Guo, Jian Shen, Yanru Qu, Jieli Lu, Min Xu, Yu Xu, Tiange Wang, Mian Li, Wei-Wei Tu, Yong Yu, Yufang Bi, Weiqing Wang, Guang Ning

To tackle the above challenges, we employ gradient boosting decision trees (GBDT) to handle data heterogeneity and introduce multi-task learning (MTL) to solve data insufficiency.

Diabetes Prediction Multi-Task Learning

Retrieval & Interaction Machine for Tabular Data Prediction

1 code implementation11 Aug 2021 Jiarui Qin, Weinan Zhang, Rong Su, Zhirong Liu, Weiwen Liu, Ruiming Tang, Xiuqiang He, Yong Yu

Prediction over tabular data is an essential task in many data science applications such as recommender systems, online advertising, medical treatment, etc.

Attribute Click-Through Rate Prediction +2

Learning to Select Cuts for Efficient Mixed-Integer Programming

no code implementations28 May 2021 Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye Hao, Yong Yu, Jun Wang

In the online A/B testing of the product planning problems with more than $10^7$ variables and constraints daily, Cut Ranking has achieved the average speedup ratio of 12. 42% over the production solver without any accuracy loss of solution.

Multiple Instance Learning

MapGo: Model-Assisted Policy Optimization for Goal-Oriented Tasks

1 code implementation13 May 2021 Menghui Zhu, Minghuan Liu, Jian Shen, Zhicheng Zhang, Sheng Chen, Weinan Zhang, Deheng Ye, Yong Yu, Qiang Fu, Wei Yang

In Goal-oriented Reinforcement learning, relabeling the raw goals in past experience to provide agents with hindsight ability is a major solution to the reward sparsity problem.

Diversity

An Adversarial Imitation Click Model for Information Retrieval

1 code implementation13 Apr 2021 Xinyi Dai, Jianghao Lin, Weinan Zhang, Shuai Li, Weiwen Liu, Ruiming Tang, Xiuqiang He, Jianye Hao, Jun Wang, Yong Yu

Modern information retrieval systems, including web search, ads placement, and recommender systems, typically rely on learning from user feedback.

Imitation Learning Information Retrieval +2

Bag of Tricks for Node Classification with Graph Neural Networks

2 code implementations24 Mar 2021 Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, David Wipf

Over the past few years, graph neural networks (GNN) and label propagation-based methods have made significant progress in addressing node classification tasks on graphs.

Classification General Classification +2

Universal Trading for Order Execution with Oracle Policy Distillation

no code implementations28 Jan 2021 Yuchen Fang, Kan Ren, Weiqing Liu, Dong Zhou, Weinan Zhang, Jiang Bian, Yong Yu, Tie-Yan Liu

As a fundamental problem in algorithmic trading, order execution aims at fulfilling a specific trading order, either liquidation or acquirement, for a given instrument.

Algorithmic Trading reinforcement-learning +2

Non-iterative Parallel Text Generation via Glancing Transformer

no code implementations1 Jan 2021 Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, Lei LI

Although non-autoregressive models with one-iteration generation achieves remarkable inference speed-up, they still falls behind their autoregressive counterparts inprediction accuracy.

Language Modelling Text Generation

Explore with Dynamic Map: Graph Structured Reinforcement Learning

no code implementations1 Jan 2021 Jiarui Jin, Sijin Zhou, Weinan Zhang, Rasool Fakoor, David Wipf, Tong He, Yong Yu, Zheng Zhang, Alex Smola

In reinforcement learning, a map with states and transitions built based on historical trajectories is often helpful in exploration and exploitation.

reinforcement-learning Reinforcement Learning +1

Regioned Episodic Reinforcement Learning

no code implementations1 Jan 2021 Jiarui Jin, Cong Chen, Ming Zhou, Weinan Zhang, Rasool Fakoor, David Wipf, Yong Yu, Jun Wang, Alex Smola

Goal-oriented reinforcement learning algorithms are often good at exploration, not exploitation, while episodic algorithms excel at exploitation, not exploration.

reinforcement-learning Reinforcement Learning +1

Improving Knowledge Tracing via Pre-training Question Embeddings

1 code implementation9 Dec 2020 Yunfei Liu, Yang Yang, Xianyu Chen, Jian Shen, Haifeng Zhang, Yong Yu

Knowledge tracing (KT) defines the task of predicting whether students can correctly answer questions based on their historical response.

Knowledge Tracing

Towards Generalized Implementation of Wasserstein Distance in GANs

1 code implementation7 Dec 2020 Minkai Xu, Zhiming Zhou, Guansong Lu, Jian Tang, Weinan Zhang, Yong Yu

Wasserstein GANs (WGANs), built upon the Kantorovich-Rubinstein (KR) duality of Wasserstein distance, is one of the most theoretically sound GAN models.

U-rank: Utility-oriented Learning to Rank with Implicit Feedback

no code implementations1 Nov 2020 Xinyi Dai, Jiawei Hou, Qing Liu, Yunjia Xi, Ruiming Tang, Weinan Zhang, Xiuqiang He, Jun Wang, Yong Yu

To this end, we propose a novel ranking framework called U-rank that directly optimizes the expected utility of the ranking list.

Click-Through Rate Prediction Learning-To-Rank +2

Efficient Projection-Free Algorithms for Saddle Point Problems

no code implementations NeurIPS 2020 Cheng Chen, Luo Luo, Weinan Zhang, Yong Yu

The Frank-Wolfe algorithm is a classic method for constrained optimization problems.

Model-based Policy Optimization with Unsupervised Model Adaptation

1 code implementation NeurIPS 2020 Jian Shen, Han Zhao, Weinan Zhang, Yong Yu

However, due to the potential distribution mismatch between simulated data and real data, this could lead to degraded performance.

continuous-control Continuous Control +4

AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of BMS and Environmental Data

no code implementations9 Oct 2020 Yong Yu

Although many research works and projects turn to this direction for energy saving, the application into the optimization problem remains a challenging task.

GIKT: A Graph-based Interaction Model for Knowledge Tracing

3 code implementations13 Sep 2020 Yang Yang, Jian Shen, Yanru Qu, Yunfei Liu, Kerong Wang, Yaoming Zhu, Wei-Nan Zhang, Yong Yu

With the rapid development in online education, knowledge tracing (KT) has become a fundamental problem which traces students' knowledge status and predicts their performance on new questions.

Knowledge Tracing

Bidirectional Model-based Policy Optimization

1 code implementation ICML 2020 Hang Lai, Jian Shen, Wei-Nan Zhang, Yong Yu

Model-based reinforcement learning approaches leverage a forward dynamics model to support planning and decision making, which, however, may fail catastrophically if the model is inaccurate.

Decision Making Model-based Reinforcement Learning +1

An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph

1 code implementation1 Jul 2020 Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Wei-Nan Zhang, Yong Yu, Zheng Zhang, Alexander J. Smola

To the best of our knowledge, this is the first work providing an efficient neighborhood-based interaction model in the HIN-based recommendations.

Recommendation Systems

Interactive Recommender System via Knowledge Graph-enhanced Reinforcement Learning

no code implementations18 Jun 2020 Sijin Zhou, Xinyi Dai, Haokun Chen, Wei-Nan Zhang, Kan Ren, Ruiming Tang, Xiuqiang He, Yong Yu

Interactive recommender system (IRS) has drawn huge attention because of its flexible recommendation strategy and the consideration of optimal long-term user experiences.

Decision Making Recommendation Systems +4

User Behavior Retrieval for Click-Through Rate Prediction

1 code implementation28 May 2020 Jiarui Qin, Wei-Nan Zhang, Xin Wu, Jiarui Jin, Yuchen Fang, Yong Yu

These retrieved behaviors are then fed into a deep model to make the final prediction instead of simply using the most recent ones.

Click-Through Rate Prediction Retrieval

A Deep Recurrent Survival Model for Unbiased Ranking

1 code implementation30 Apr 2020 Jiarui Jin, Yuchen Fang, Wei-Nan Zhang, Kan Ren, Guorui Zhou, Jian Xu, Yong Yu, Jun Wang, Xiaoqiang Zhu, Kun Gai

Position bias is a critical problem in information retrieval when dealing with implicit yet biased user feedback data.

Information Retrieval Position +2

Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip

1 code implementation3 Apr 2020 Yuxuan Song, Minkai Xu, Lantao Yu, Hao Zhou, Shuo Shao, Yong Yu

In this paper, motivated by the inherent connections between neural joint source-channel coding and discrete representation learning, we propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme.

Decoder Representation Learning

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction

4 code implementations25 Mar 2020 Bin Liu, Chenxu Zhu, Guilin Li, Wei-Nan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li, Yong Yu

By implementing a regularized optimizer over the architecture parameters, the model can automatically identify and remove the redundant feature interactions during the training process of the model.

Click-Through Rate Prediction Recommendation Systems

Multi-Agent Interactions Modeling with Correlated Policies

1 code implementation ICLR 2020 Minghuan Liu, Ming Zhou, Wei-Nan Zhang, Yuzheng Zhuang, Jun Wang, Wulong Liu, Yong Yu

In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework with explicit modeling of correlated policies by approximating opponents' policies, which can recover agents' policies that can regenerate similar interactions.

Imitation Learning

Improving Unsupervised Domain Adaptation with Variational Information Bottleneck

no code implementations21 Nov 2019 Yuxuan Song, Lantao Yu, Zhangjie Cao, Zhiming Zhou, Jian Shen, Shuo Shao, Wei-Nan Zhang, Yong Yu

Domain adaptation aims to leverage the supervision signal of source domain to obtain an accurate model for target domain, where the labels are not available.

Unsupervised Domain Adaptation

Exploring Diverse Expressions for Paraphrase Generation

no code implementations IJCNLP 2019 Lihua Qian, Lin Qiu, Wei-Nan Zhang, Xin Jiang, Yong Yu

Paraphrasing plays an important role in various natural language processing (NLP) tasks, such as question answering, information retrieval and sentence simplification.

Diversity Information Retrieval +6

Signal Instructed Coordination in Cooperative Multi-agent Reinforcement Learning

no code implementations10 Sep 2019 Liheng Chen, Hongyi Guo, Yali Du, Fei Fang, Haifeng Zhang, Yaoming Zhu, Ming Zhou, Wei-Nan Zhang, Qing Wang, Yong Yu

Although existing works formulate this problem into a centralized learning with decentralized execution framework, which avoids the non-stationary problem in training, their decentralized execution paradigm limits the agents' capability to coordinate.

Multi-agent Reinforcement Learning reinforcement-learning +2

Towards Making the Most of BERT in Neural Machine Translation

2 code implementations15 Aug 2019 Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi Zhao, Yong Yu, Wei-Nan Zhang, Lei LI

Our experiments in machine translation show CTNMT gains of up to 3 BLEU score on the WMT14 English-German language pair which even surpasses the previous state-of-the-art pre-training aided NMT by 1. 4 BLEU score.

Machine Translation NMT +2

Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning

1 code implementation KDD '19 2019 Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, Junbo Zhang

Predicting urban traffic is of great importance to intelligent transportation systems and public safety, yet is very challenging because of two aspects: 1) complex spatio-temporal correlations of urban traffic, including spatial correlations between locations along with temporal correlations among timestamps; 2) diversity of such spatiotemporal correlations, which vary from location to location and depend on the surrounding geographical information, e. g., points of interests and road networks.

Decoder Diversity +5

Dynamically Fused Graph Network for Multi-hop Reasoning

1 code implementation ACL 2019 Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei LI, Wei-Nan Zhang, Yong Yu

However, many difficult questions require multiple supporting evidence from scattered text among two or more documents.

Question Answering

CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario

1 code implementation13 May 2019 Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Wei-Nan Zhang, Yong Yu, Haiming Jin, Zhenhui Li

The most commonly used open-source traffic simulator SUMO is, however, not scalable to large road network and large traffic flow, which hinders the study of reinforcement learning on traffic scenarios.

Multi-agent Reinforcement Learning reinforcement-learning +3

Deep Landscape Forecasting for Real-time Bidding Advertising

2 code implementations7 May 2019 Kan Ren, Jiarui Qin, Lei Zheng, Zhengyu Yang, Wei-Nan Zhang, Yong Yu

The problem is formulated as to forecast the probability distribution of market price for each ad auction.

Survival Analysis

Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

1 code implementation2 May 2019 Kan Ren, Jiarui Qin, Yuchen Fang, Wei-Nan Zhang, Lei Zheng, Weijie Bian, Guorui Zhou, Jian Xu, Yong Yu, Xiaoqiang Zhu, Kun Gai

In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user.

Memorization

Towards Efficient and Unbiased Implementation of Lipschitz Continuity in GANs

1 code implementation2 Apr 2019 Zhiming Zhou, Jian Shen, Yuxuan Song, Wei-Nan Zhang, Yong Yu

Lipschitz continuity recently becomes popular in generative adversarial networks (GANs).

Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space

1 code implementation4 Mar 2019 Zhou Fan, Rui Su, Wei-Nan Zhang, Yong Yu

In this paper we propose a hybrid architecture of actor-critic algorithms for reinforcement learning in parameterized action space, which consists of multiple parallel sub-actor networks to decompose the structured action space into simpler action spaces along with a critic network to guide the training of all sub-actor networks.

reinforcement-learning Reinforcement Learning +1

Lipschitz Generative Adversarial Nets

1 code implementation15 Feb 2019 Zhiming Zhou, Jiadong Liang, Yuxuan Song, Lantao Yu, Hongwei Wang, Wei-Nan Zhang, Yong Yu, Zhihua Zhang

By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to 1-Lipschitz, does not suffer from such a gradient uninformativeness problem.

Informativeness

Guiding the One-to-one Mapping in CycleGAN via Optimal Transport

no code implementations15 Nov 2018 Guansong Lu, Zhiming Zhou, Yuxuan Song, Kan Ren, Yong Yu

CycleGAN is capable of learning a one-to-one mapping between two data distributions without paired examples, achieving the task of unsupervised data translation.

Translation

Layout Design for Intelligent Warehouse by Evolution with Fitness Approximation

no code implementations14 Nov 2018 Haifeng Zhang, Zilong Guo, Han Cai, Chris Wang, Wei-Nan Zhang, Yong Yu, Wenxin Li, Jun Wang

With the rapid growth of the express industry, intelligent warehouses that employ autonomous robots for carrying parcels have been widely used to handle the vast express volume.

Layout Design

Large-scale Interactive Recommendation with Tree-structured Policy Gradient

no code implementations14 Nov 2018 Haokun Chen, Xinyi Dai, Han Cai, Wei-Nan Zhang, Xuejian Wang, Ruiming Tang, Yuzhou Zhang, Yong Yu

Reinforcement learning (RL) has recently been introduced to interactive recommender systems (IRS) because of its nature of learning from dynamic interactions and planning for long-run performance.

Clustering Recommendation Systems +2

HyperST-Net: Hypernetworks for Spatio-Temporal Forecasting

no code implementations28 Sep 2018 Zheyi Pan, Yuxuan Liang, Junbo Zhang, Xiuwen Yi, Yong Yu, Yu Zheng

In this paper, we propose a general framework (HyperST-Net) based on hypernetworks for deep ST models.

Spatio-Temporal Forecasting Time Series +1

Sampled in Pairs and Driven by Text: A New Graph Embedding Framework

no code implementations12 Sep 2018 Liheng Chen, Yanru Qu, Zhenghui Wang, Lin Qiu, Wei-Nan Zhang, Ken Chen, Shaodian Zhang, Yong Yu

TGE-PS uses Pairs Sampling (PS) to improve the sampling strategy of RW, being able to reduce ~99% training samples while preserving competitive performance.

Graph Embedding Link Prediction

Deep Recurrent Survival Analysis

1 code implementation7 Sep 2018 Kan Ren, Jiarui Qin, Lei Zheng, Zhengyu Yang, Wei-Nan Zhang, Lin Qiu, Yong Yu

By capturing the time dependency through modeling the conditional probability of the event for each sample, our method predicts the likelihood of the true event occurrence and estimates the survival rate over time, i. e., the probability of the non-occurrence of the event, for the censored data.

Survival Analysis

Learning Multi-touch Conversion Attribution with Dual-attention Mechanisms for Online Advertising

1 code implementation11 Aug 2018 Kan Ren, Yuchen Fang, Wei-Nan Zhang, Shuhao Liu, Jiajun Li, Ya zhang, Yong Yu, Jun Wang

To achieve this, we utilize sequence-to-sequence prediction for user clicks, and combine both post-view and post-click attribution patterns together for the final conversion estimation.

Understanding the Effectiveness of Lipschitz-Continuity in Generative Adversarial Nets

1 code implementation2 Jul 2018 Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Wei-Nan Zhang, Zhihua Zhang, Yong Yu

In this paper, we investigate the underlying factor that leads to failure and success in the training of GANs.

valid

Product-based Neural Networks for User Response Prediction over Multi-field Categorical Data

8 code implementations1 Jul 2018 Yanru Qu, Bohui Fang, Wei-Nan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo, Yong Yu, Xiuqiang He

User response prediction is a crucial component for personalized information retrieval and filtering scenarios, such as recommender system and web search.

Click-Through Rate Prediction Feature Engineering +3