Search Results for author: Yongcheng Liu

Found 5 papers, 4 papers with code

Differentiable Convolution Search for Point Cloud Processing

no code implementations ICCV 2021 Xing Nie, Yongcheng Liu, Shaohong Chen, Jianlong Chang, Chunlei Huo, Gaofeng Meng, Qi Tian, Weiming Hu, Chunhong Pan

It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling.

Relation-Shape Convolutional Neural Network for Point Cloud Analysis

4 code implementations CVPR 2019 Yongcheng Liu, Bin Fan, Shiming Xiang, Chunhong Pan

Specifically, the convolutional weight for local point set is forced to learn a high-level relation expression from predefined geometric priors, between a sampled point from this point set and the others.

Ranked #17 on 3D Part Segmentation on ShapeNet-Part (Instance Average IoU metric)

3D Part Segmentation 3D Point Cloud Classification

Multi-Label Image Classification via Knowledge Distillation from Weakly-Supervised Detection

1 code implementation16 Sep 2018 Yongcheng Liu, Lu Sheng, Jing Shao, Junjie Yan, Shiming Xiang, Chunhong Pan

Specifically, given the image-level annotations, (1) we first develop a weakly-supervised detection (WSD) model, and then (2) construct an end-to-end multi-label image classification framework augmented by a knowledge distillation module that guides the classification model by the WSD model according to the class-level predictions for the whole image and the object-level visual features for object RoIs.

Classification General Classification +3

Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network

1 code implementation30 Jul 2018 Yongcheng Liu, Bin Fan, Lingfeng Wang, Jun Bai, Shiming Xiang, Chunhong Pan

Specifically, for confusing manmade objects, ScasNet improves the labeling coherence with sequential global-to-local contexts aggregation.

Cannot find the paper you are looking for? You can Submit a new open access paper.