no code implementations • Findings (NAACL) 2022 • Lu Sun, Yongliang Shen, Weiming Lu
In this paper, we propose a novel method to induce relation with BERT under the minimally-supervised setting.
no code implementations • ACL 2022 • Shuai Zhang, Yongliang Shen, Zeqi Tan, Yiquan Wu, Weiming Lu
Named entity recognition (NER) is a fundamental task to recognize specific types of entities from a given sentence.
1 code implementation • 1 Jan 2025 • Wenqi Zhang, Hang Zhang, Xin Li, Jiashuo Sun, Yongliang Shen, Weiming Lu, Deli Zhao, Yueting Zhuang, Lidong Bing
Compared to its counterparts, our video-centric textbook offers more coherent context, richer knowledge, and better image-text alignment.
no code implementations • 28 Dec 2024 • Haoyu Zheng, Wenqiao Zhang, Zheqi Lv, Yu Zhong, Yang Dai, Jianxiang An, Yongliang Shen, Juncheng Li, Dongping Zhang, Siliang Tang, Yueting Zhuang
Diffusion-based text-to-image (T2I) models have demonstrated remarkable results in global video editing tasks.
1 code implementation • 15 Oct 2024 • Fei Tang, Yongliang Shen, Hang Zhang, Zeqi Tan, Wenqi Zhang, Guiyang Hou, Kaitao Song, Weiming Lu, Yueting Zhuang
GaVaMoE introduces two key components: (1) a rating reconstruction module that employs Variational Autoencoder (VAE) with a Gaussian Mixture Model (GMM) to capture complex user-item collaborative preferences, serving as a pre-trained multi-gating mechanism; and (2) a set of fine-grained expert models coupled with the multi-gating mechanism for generating highly personalized explanations.
1 code implementation • 8 Oct 2024 • Guiyang Hou, Wenqi Zhang, Yongliang Shen, Zeqi Tan, Sihao Shen, Weiming Lu
(3) a lack of comprehensive evaluation of behavioral intelligence, with specific emphasis on incorporating critical human-machine interaction scenarios.
1 code implementation • 9 Jul 2024 • Wenqi Zhang, Zhenglin Cheng, Yuanyu He, Mengna Wang, Yongliang Shen, Zeqi Tan, Guiyang Hou, Mingqian He, Yanna Ma, Weiming Lu, Yueting Zhuang
In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios.
no code implementations • 1 Jul 2024 • Guiyang Hou, Wenqi Zhang, Yongliang Shen, Linjuan Wu, Weiming Lu
Theory of Mind (ToM)-the cognitive ability to reason about mental states of ourselves and others, is the foundation of social interaction.
no code implementations • 29 Jun 2024 • Mingqian He, Yongliang Shen, Wenqi Zhang, Zeqi Tan, Weiming Lu
For instance, Tree-PLV achieved substantial performance gains over the Mistral-7B self-consistency baseline on GSM8K (67. 55% to 82. 79%), MATH (17. 00% to 26. 80%), CSQA (68. 14% to 72. 97%), and StrategyQA (82. 86% to 83. 25%). Additionally, our study explores the appropriate granularity for applying preference learning, revealing that step-level guidance provides feedback that better aligns with the evaluation of the reasoning process.
1 code implementation • 27 Feb 2024 • Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li, Yueting Zhuang, Weiming Lu
Large Language Models (LLMs) exhibit robust problem-solving capabilities for diverse tasks.
1 code implementation • 11 Jan 2024 • Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, Deqing Yang
EasyTool purifies essential information from extensive tool documentation of different sources, and elaborates a unified interface (i. e., tool instruction) to offer standardized tool descriptions and functionalities for LLM-based agents.
no code implementations • 4 Jan 2024 • Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying Peng, Jun Wang, Yueting Zhuang, Weiming Lu
Experiments conducted on a series of reasoning and translation tasks with different LLMs serve to underscore the effectiveness and generality of our strategy.
1 code implementation • 30 Nov 2023 • Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, Yueting Zhuang
To address this, we introduce TaskBench, a comprehensive framework to evaluate the capability of LLMs in task automation.
1 code implementation • 14 Oct 2023 • Wenqi Zhang, Yongliang Shen, Qingpeng Nong, Zeqi Tan, Yanna Ma, Weiming Lu
To generate a tree with expression as its node, we employ a layer-wise parallel decoding strategy: we decode multiple independent expressions (leaf nodes) in parallel at each layer and repeat parallel decoding layer by layer to sequentially generate these parent node expressions that depend on others.
Ranked #2 on Math Word Problem Solving on MathQA
1 code implementation • 12 Oct 2023 • Shuhui Wu, Yongliang Shen, Zeqi Tan, Wenqi Ren, Jietian Guo, ShiLiang Pu, Weiming Lu
Distantly supervised named entity recognition (DS-NER) aims to locate entity mentions and classify their types with only knowledge bases or gazetteers and unlabeled corpus.
1 code implementation • 12 Jun 2023 • Wenqi Zhang, Yongliang Shen, Weiming Lu, Yueting Zhuang
The advancements are twofold: First, it is a code-centric agent that receives human requests and generates code as an intermediary to handle massive data, which is quite flexible for large-scale data processing tasks.
1 code implementation • 26 May 2023 • Yongliang Shen, Zeqi Tan, Shuhui Wu, Wenqi Zhang, Rongsheng Zhang, Yadong Xi, Weiming Lu, Yueting Zhuang
Prompt learning is a new paradigm for utilizing pre-trained language models and has achieved great success in many tasks.
Ranked #1 on Nested Named Entity Recognition on ACE 2004
2 code implementations • 22 May 2023 • Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, Yueting Zhuang
In this paper, we propose DiffusionNER, which formulates the named entity recognition task as a boundary-denoising diffusion process and thus generates named entities from noisy spans.
Ranked #2 on Nested Named Entity Recognition on GENIA
1 code implementation • 18 May 2023 • Wei Xue, Yongliang Shen, Wenqi Ren, Jietian Guo, ShiLiang Pu, Weiming Lu
Taxonomy completion, enriching existing taxonomies by inserting new concepts as parents or attaching them as children, has gained significant interest.
1 code implementation • NeurIPS 2023 • Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, Yueting Zhuang
Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence.
Automatic Machine Learning Model Selection Model Selection +2
no code implementations • 3 Nov 2022 • Zeqi Tan, Yongliang Shen, Xuming Hu, Wenqi Zhang, Xiaoxia Cheng, Weiming Lu, Yueting Zhuang
Joint entity and relation extraction has been a core task in the field of information extraction.
Contrastive Learning Joint Entity and Relation Extraction +1
1 code implementation • 21 Oct 2022 • Wenqi Zhang, Yongliang Shen, Yanna Ma, Xiaoxia Cheng, Zeqi Tan, Qingpeng Nong, Weiming Lu
Math word problem solver requires both precise relation reasoning about quantities in the text and reliable generation for the diverse equation.
Ranked #2 on Math Word Problem Solving on Math23K (using extra training data)
1 code implementation • 24 Aug 2022 • Xinyu Zhu, Yongliang Shen, Weiming Lu
Concomitant administration of drugs can cause drug-drug interactions (DDIs).
no code implementations • 16 May 2022 • Xinyin Ma, Xinchao Wang, Gongfan Fang, Yongliang Shen, Weiming Lu
Data-free knowledge distillation (DFKD) conducts knowledge distillation via eliminating the dependence of original training data, and has recently achieved impressive results in accelerating pre-trained language models.
1 code implementation • 27 Apr 2022 • Shuhui Wu, Yongliang Shen, Zeqi Tan, Weiming Lu
In the refine stage, proposals interact with each other, and richer contextual information is incorporated into the proposal representations.
1 code implementation • ACL 2022 • Yongliang Shen, Xiaobin Wang, Zeqi Tan, Guangwei Xu, Pengjun Xie, Fei Huang, Weiming Lu, Yueting Zhuang
Each instance query predicts one entity, and by feeding all instance queries simultaneously, we can query all entities in parallel.
Ranked #1 on Nested Named Entity Recognition on GENIA
Chinese Named Entity Recognition named-entity-recognition +5
2 code implementations • 17 Mar 2022 • Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, DaCheng Tao
Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency.
1 code implementation • SemEval (NAACL) 2022 • Xinyu Wang, Yongliang Shen, Jiong Cai, Tao Wang, Xiaobin Wang, Pengjun Xie, Fei Huang, Weiming Lu, Yueting Zhuang, Kewei Tu, Wei Lu, Yong Jiang
Our system wins 10 out of 13 tracks in the MultiCoNER shared task.
Multilingual Named Entity Recognition Named Entity Recognition +1
no code implementations • NAACL 2021 • Chenghao Jia, Yongliang Shen, Yechun Tang, Lu Sun, Weiming Lu
Prerequisite relations among concepts are crucial for educational applications, such as curriculum planning and intelligent tutoring.
1 code implementation • 19 May 2021 • Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu, Yueting Zhuang
We utilize a non-autoregressive decoder to predict the final set of entities in one pass, in which we are able to capture dependencies between entities.
Ranked #6 on Nested Named Entity Recognition on ACE 2005
1 code implementation • ACL 2021 • Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang, Wen Wang, Weiming Lu
Although these methods have the innate ability to handle nested NER, they suffer from high computational cost, ignorance of boundary information, under-utilization of the spans that partially match with entities, and difficulties in long entity recognition.
Ranked #6 on Nested Named Entity Recognition on GENIA
Chinese Named Entity Recognition named-entity-recognition +3
1 code implementation • 25 Jan 2021 • Yongliang Shen, Xinyin Ma, Yechun Tang, Weiming Lu
Joint entity and relation extraction framework constructs a unified model to perform entity recognition and relation extraction simultaneously, which can exploit the dependency between the two tasks to mitigate the error propagation problem suffered by the pipeline model.
Ranked #1 on Relation Extraction on CoNLL04 (NER Micro F1 metric)
Joint Entity and Relation Extraction Reading Comprehension +2
no code implementations • Findings of the Association for Computational Linguistics 2020 • Jiale Yu, Yongliang Shen, Xinyin Ma, Chenghao Jia, Chen Chen, Weiming Lu
Extensive experiments on a real-world dataset show the effectiveness of our approach.
no code implementations • EMNLP 2020 • Xinyin Ma, Yongliang Shen, Gongfan Fang, Chen Chen, Chenghao Jia, Weiming Lu
To the best of our knowledge, our framework is the first data-free distillation framework designed for NLP tasks.
no code implementations • 11 Jun 2020 • Zeyun Tang, Yongliang Shen, Xinyin Ma, Wei Xu, Jiale Yu, Weiming Lu
Meanwhile, we propose Gated-RGCN to accumulate evidence on the path-based reasoning graph, which contains a new question-aware gating mechanism to regulate the usefulness of information propagating across documents and add question information during reasoning.